論文の概要: ICU: Conquering Language Barriers in Vision-and-Language Modeling by
Dividing the Tasks into Image Captioning and Language Understanding
- arxiv url: http://arxiv.org/abs/2310.12531v1
- Date: Thu, 19 Oct 2023 07:11:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-20 16:26:26.581518
- Title: ICU: Conquering Language Barriers in Vision-and-Language Modeling by
Dividing the Tasks into Image Captioning and Language Understanding
- Title(参考訳): ICU:タスクをイメージキャプションと言語理解に分割した視覚・言語モデリングにおける言語バリアの検索
- Authors: Guojun Wu
- Abstract要約: ICUは、V&Lタスクを2段階に分割する: V&Lモデルが英語で画像キャプションを行い、マルチ言語モデル(mLM)がそのキャプションをaltテキストとして取り、言語間理解を行う。
ICUは5つの言語に対して新しい最先端の結果が得られ、残りの言語では同等の結果が得られることを示す。
- 参考スコア(独自算出の注目度): 1.9906814758497542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most multilingual vision-and-language (V&L) research aims to accomplish
multilingual and multimodal capabilities within one model. However, the
scarcity of multilingual captions for images has hindered the development. To
overcome this obstacle, we propose ICU, Image Caption Understanding, which
divides a V&L task into two stages: a V&L model performs image captioning in
English, and a multilingual language model (mLM), in turn, takes the caption as
the alt text and performs crosslingual language understanding. The burden of
multilingual processing is lifted off V&L model and placed on mLM. Since the
multilingual text data is relatively of higher abundance and quality, ICU can
facilitate the conquering of language barriers for V&L models. In experiments
on two tasks across 9 languages in the IGLUE benchmark, we show that ICU can
achieve new state-of-the-art results for five languages, and comparable results
for the rest.
- Abstract(参考訳): 多くの多言語視覚言語研究(v&l)は、1つのモデルで多言語および多言語機能を達成することを目的としている。
しかし、画像の多言語キャプションの不足が開発を妨げている。
この障害を克服するために、V&Lモデルが画像キャプションを英語で実行し、マルチリンガル言語モデル(mLM)がaltテキストとしてキャプションを取り、クロスリンガル言語理解を行う、V&Lタスクを2つのステージに分割するICU、画像キャプション理解(Image Caption Understanding)を提案する。
多言語処理の負担はV&Lモデルから引き上げられ、mLM上に置かれる。
多言語テキストデータが比較的豊富で品質が高いため、ICUはV&Lモデルの言語障壁の克服を容易にすることができる。
iglueベンチマークで9つの言語にまたがる2つのタスクに関する実験で、icuは5つの言語で最新の結果を達成でき、他の言語でも同様の結果が得られることを示した。
関連論文リスト
- Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training [29.47243668154796]
BLOOMZMMSは多言語LLMと多言語音声エンコーダを統合する新しいモデルである。
本稿では,言語知識のテキストから音声モダリティへの伝達性を示す。
ゼロショット評価の結果は、複数のタスクにまたがるアプローチの堅牢性を確認します。
論文 参考訳(メタデータ) (2024-04-16T21:45:59Z) - VLIS: Unimodal Language Models Guide Multimodal Language Generation [23.094728230459125]
VLIS(Importance Smpling weights)として視覚言語モデルを導入する。
視覚言語モデルの視覚的条件付け能力と、追加のトレーニングを伴わずに、アンモダルテキストのみの言語モデルの言語理解を組み合わせる。
VLISは、常識理解や複雑なテキスト生成など、様々なタスクにおける視覚言語モデルを改善する。
論文 参考訳(メタデータ) (2023-10-15T07:58:52Z) - Ziya-Visual: Bilingual Large Vision-Language Model via Multi-Task
Instruction Tuning [27.544311403607786]
バイリンガルな大規模視覚言語モデル(LVLM)の集合であるZiya-Visualシリーズを紹介する。
我々のモデルは BLIP-2 から Querying Transformer を採用し,最適化手法のさらなる支援を探求している。
さらに,多モーダルシナリオにおけるGPT-4の理解能力を刺激し,収集した英語画像テキストデータセットを中国語に翻訳する。
論文 参考訳(メタデータ) (2023-10-12T09:39:17Z) - PaLI-X: On Scaling up a Multilingual Vision and Language Model [166.9837904115951]
マルチ言語ビジョンと言語モデルであるPaLI-Xをスケールアップする際のトレーニングレシピと結果を示す。
我々のモデルは、多種多様な複雑なタスクにおいて、新しいレベルのパフォーマンスを達成する。
複雑なカウントや多言語オブジェクト検出といった,トレーニングミックスに明示的に含まれないタスクの出現を観察する。
論文 参考訳(メタデータ) (2023-05-29T18:58:38Z) - Hindi as a Second Language: Improving Visually Grounded Speech with
Semantically Similar Samples [89.16814518860357]
本研究の目的は,多言語の観点からの視覚的基盤音声モデル(VGS)の学習を検討することである。
この研究における重要な貢献は、低リソース言語の性能を向上させるために、バイリンガルな視覚的基盤を持つ音声モデルにおける高リソース言語のパワーを活用することである。
論文 参考訳(メタデータ) (2023-03-30T16:34:10Z) - Language Is Not All You Need: Aligning Perception with Language Models [110.51362453720458]
Kosmos-1はMLLM(Multimodal Large Language Model)で、一般的なモダリティを認識し、文脈で学習し、指示に従うことができる。
我々は、任意にインターリーブされたテキストと画像、画像キャプチャペア、テキストデータを含む、Webスケールのマルチモーダルコーパス上で、Kosmos-1をスクラッチからトレーニングする。
実験結果から,Kosmos-1 は (i) 言語理解,生成,さらには OCR フリー NLP において優れた性能を発揮することが示された。
また、MLLMは言語からマルチモーダルへの知識の伝達や多モーダルから言語への知識の伝達といった、クロスモーダル転送の恩恵を受けることができることを示す。
論文 参考訳(メタデータ) (2023-02-27T18:55:27Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
視覚と言語(V-L)タスクは、視覚内容と自然言語の両方を理解する必要がある。
視覚と言語に対する注意空間を分離したDiMBERT(Disentangled Multimodal-Attention BERT)を提案する。
DiMBERTは3つのタスクに対して最新のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-10-28T23:00:40Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。