ICU: Conquering Language Barriers in Vision-and-Language Modeling by
Dividing the Tasks into Image Captioning and Language Understanding
- URL: http://arxiv.org/abs/2310.12531v3
- Date: Mon, 5 Feb 2024 10:28:43 GMT
- Title: ICU: Conquering Language Barriers in Vision-and-Language Modeling by
Dividing the Tasks into Image Captioning and Language Understanding
- Authors: Guojun Wu
- Abstract summary: ICU, Image Caption Understanding, divides a V&L task into two stages: a V&L model performs image captioning in English, and a multilingual language model (mLM) takes the caption as the alt text and performs cross-lingual language understanding.
We show that ICU can achieve new state-of-the-art results for five languages, and comparable results for the rest.
- Score: 1.9906814758497542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most multilingual vision-and-language (V&L) research aims to accomplish
multilingual and multimodal capabilities within one model. However, the
scarcity of multilingual captions for images has hindered the development. To
overcome this obstacle, we propose ICU, Image Caption Understanding, which
divides a V&L task into two stages: a V&L model performs image captioning in
English, and a multilingual language model (mLM), in turn, takes the caption as
the alt text and performs cross-lingual language understanding. The burden of
multilingual processing is lifted off V&L model and placed on mLM. Since the
multilingual text data is relatively of higher abundance and quality, ICU can
facilitate the conquering of language barriers for V&L models. In experiments
on two tasks across 9 languages in the IGLUE benchmark, we show that ICU can
achieve new state-of-the-art results for five languages, and comparable results
for the rest.
Related papers
- Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training [29.47243668154796]
BLOOMZMMS is a novel model that integrates a multilingual LLM with a multilingual speech encoder.
We demonstrate the transferability of linguistic knowledge from the text to the speech modality.
Our zero-shot evaluation results confirm the robustness of our approach across multiple tasks.
arXiv Detail & Related papers (2024-04-16T21:45:59Z) - VLIS: Unimodal Language Models Guide Multimodal Language Generation [23.094728230459125]
We introduce Visual-Language models as Importance Sampling weights (VLIS)
It combines the visual conditioning capability of vision-language models with the language understanding of unimodal text-only language models without further training.
VLIS improves vision-language models on diverse tasks, including commonsense understanding and complex text generation.
arXiv Detail & Related papers (2023-10-15T07:58:52Z) - Ziya-Visual: Bilingual Large Vision-Language Model via Multi-Task
Instruction Tuning [27.544311403607786]
We introduce the Ziya-Visual series, a set of bilingual large-scale vision-language models (LVLMs)
Our models adopt the Querying Transformer from BLIP-2, further exploring the assistance of optimization schemes.
In addition, we stimulate the understanding ability of GPT-4 in multi-modal scenarios, translating our gathered English image-text datasets into Chinese.
arXiv Detail & Related papers (2023-10-12T09:39:17Z) - PaLI-X: On Scaling up a Multilingual Vision and Language Model [166.9837904115951]
We present the training recipe and results of scaling up PaLI-X, a multilingual vision and language model.
Our model achieves new levels of performance on a wide-range of varied and complex tasks.
We observe emerging capabilities, such as complex counting and multilingual object detection, tasks that are not explicitly in the training mix.
arXiv Detail & Related papers (2023-05-29T18:58:38Z) - Hindi as a Second Language: Improving Visually Grounded Speech with
Semantically Similar Samples [89.16814518860357]
The objective of this work is to explore the learning of visually grounded speech models (VGS) from multilingual perspective.
Our key contribution in this work is to leverage the power of a high-resource language in a bilingual visually grounded speech model to improve the performance of a low-resource language.
arXiv Detail & Related papers (2023-03-30T16:34:10Z) - Language Is Not All You Need: Aligning Perception with Language Models [110.51362453720458]
We introduce Kosmos-1, a Multimodal Large Language Model (MLLM) that can perceive general modalities, learn in context, and follow instructions.
We train Kosmos-1 from scratch on web-scale multimodal corpora, including arbitrarily interleaved text and images, image-caption pairs, and text data.
Experimental results show that Kosmos-1 achieves impressive performance on (i) language understanding, generation, and even OCR-free NLP.
We also show that MLLMs can benefit from cross-modal transfer, i.e., transfer knowledge from language to multimodal, and from multimodal to language
arXiv Detail & Related papers (2023-02-27T18:55:27Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
Vision-and-language (V-L) tasks require the system to understand both vision content and natural language.
We propose DiMBERT (short for Disentangled Multimodal-Attention BERT), which applies separated attention spaces for vision and language.
We show that DiMBERT sets new state-of-the-art performance on three tasks.
arXiv Detail & Related papers (2022-10-28T23:00:40Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
English-based Vision-Language Pre-training has achieved great success in various downstream tasks.
Some efforts have been taken to generalize this success to non-English languages through Multilingual Vision-Language Pre-training.
We propose a textbfMultitextbfLingual textbfAcquisition (MLA) framework that can easily generalize a monolingual Vision-Language Pre-training model into multilingual.
arXiv Detail & Related papers (2022-05-29T08:53:22Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2 is the first machine translation-augmented framework for cross-lingual cross-modal representation learning.
We propose two novel pre-training tasks, namely Masked Region-to-Token Modeling (MRTM) and Visual Translation Language Modeling (VTLM)
Our proposed framework achieves new state-of-the-art on diverse non-English benchmarks while maintaining comparable performance to monolingual pre-trained models on English tasks.
arXiv Detail & Related papers (2021-04-01T08:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.