Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training
- URL: http://arxiv.org/abs/2404.10922v1
- Date: Tue, 16 Apr 2024 21:45:59 GMT
- Title: Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training
- Authors: Pavel Denisov, Ngoc Thang Vu,
- Abstract summary: BLOOMZMMS is a novel model that integrates a multilingual LLM with a multilingual speech encoder.
We demonstrate the transferability of linguistic knowledge from the text to the speech modality.
Our zero-shot evaluation results confirm the robustness of our approach across multiple tasks.
- Score: 29.47243668154796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in language modeling have led to the emergence of Large Language Models (LLMs) capable of various natural language processing tasks. Despite their success in text-based tasks, applying LLMs to the speech domain remains limited and challenging. This paper presents BLOOMZMMS, a novel model that integrates a multilingual LLM with a multilingual speech encoder, aiming to harness the capabilities of LLMs for speech recognition and beyond. Utilizing a multi-instructional training approach, we demonstrate the transferability of linguistic knowledge from the text to the speech modality. Our experiments, conducted on 1900 hours of transcribed data from 139 languages, establish that a multilingual speech representation can be effectively learned and aligned with a multilingual LLM. While this learned representation initially shows limitations in task generalization, we address this issue by generating synthetic targets in a multi-instructional style. Our zero-shot evaluation results confirm the robustness of our approach across multiple tasks, including speech translation and multilingual spoken language understanding, thereby opening new avenues for applying LLMs in the speech domain.
Related papers
- Speech Recognition Rescoring with Large Speech-Text Foundation Models [20.145389016219106]
Large language models (LLM) have demonstrated the ability to understand human language by leveraging large amount of text data.
Automatic speech recognition (ASR) systems are often limited by available transcribed speech data.
Recent multi-modal large language models have demonstrated strong spoken language understanding.
arXiv Detail & Related papers (2024-09-25T06:17:23Z) - Enhancing Multilingual Speech Generation and Recognition Abilities in LLMs with Constructed Code-switched Data [30.966072545451183]
We propose a MutltiLingual MultiTask (MLMT) model, integrating multilingual speech generation and recognition tasks within the single LLM.
We develop an effective data construction approach that splits and equips words from different languages to equip synthesiss with CS ability without relying on CS data.
arXiv Detail & Related papers (2024-09-17T08:11:07Z) - Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions [68.98811048970963]
We present a pioneering effort to investigate the capability of large language models (LLMs) in transcribing speech in multi-talker environments.
Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context.
Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios.
arXiv Detail & Related papers (2024-09-13T07:28:28Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
Large Language Models (LLMs) have shown impressive language capabilities.
In this work, we investigate the spontaneous multilingual alignment improvement of LLMs.
We find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages.
arXiv Detail & Related papers (2024-05-22T16:46:19Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.
We propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.
Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons.
arXiv Detail & Related papers (2024-02-26T09:36:05Z) - How Vocabulary Sharing Facilitates Multilingualism in LLaMA? [19.136382859468693]
Large Language Models (LLMs) often show strong performance on English tasks, while exhibiting limitations on other languages.
This study endeavors to examine the multilingual capability of LLMs from the vocabulary sharing perspective.
arXiv Detail & Related papers (2023-11-15T16:13:14Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
English-based Vision-Language Pre-training has achieved great success in various downstream tasks.
Some efforts have been taken to generalize this success to non-English languages through Multilingual Vision-Language Pre-training.
We propose a textbfMultitextbfLingual textbfAcquisition (MLA) framework that can easily generalize a monolingual Vision-Language Pre-training model into multilingual.
arXiv Detail & Related papers (2022-05-29T08:53:22Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
We develop an end-to-end system that supports multiple languages.
We exploit knowledge from a pre-trained multi-lingual natural language processing model.
arXiv Detail & Related papers (2021-09-28T04:43:11Z) - DICT-MLM: Improved Multilingual Pre-Training using Bilingual
Dictionaries [8.83363871195679]
Masked modeling (MLM) objective as key language learning objective.
DICT-MLM works by incentivizing the model to be able to predict not just the original masked word, but potentially any of its cross-lingual synonyms as well.
Our empirical analysis on multiple downstream tasks spanning 30+ languages, demonstrates the efficacy of the proposed approach.
arXiv Detail & Related papers (2020-10-23T17:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.