論文の概要: ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction
- arxiv url: http://arxiv.org/abs/2310.12537v5
- Date: Fri, 20 Sep 2024 08:49:37 GMT
- ステータス: エラー
- システム内更新日: 2024-09-23 09:44:07.377735
- Title: ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction
- Title(参考訳):
- Authors: Alexander Brinkmann, Roee Shraga, Christian Bizer,
- Abstract要約: 要約中
- 参考スコア(独自算出の注目度): 52.14681890859275
- License:
- Abstract: E-commerce platforms require structured product data in the form of attribute-value pairs to offer features such as faceted product search or attribute-based product comparison. However, vendors often provide unstructured product descriptions, necessitating the extraction of attribute-value pairs from these texts. BERT-based extraction methods require large amounts of task-specific training data and struggle with unseen attribute values. This paper explores using large language models (LLMs) as a more training-data efficient and robust alternative. We propose prompt templates for zero-shot and few-shot scenarios, comparing textual and JSON-based target schema representations. Our experiments show that GPT-4 achieves the highest average F1-score of 85% using detailed attribute descriptions and demonstrations. Llama-3-70B performs nearly as well, offering a competitive open-source alternative. GPT-4 surpasses the best PLM baseline by 5% in F1-score. Fine-tuning GPT-3.5 increases the performance to the level of GPT-4 but reduces the model's ability to generalize to unseen attribute values.
- Abstract(参考訳):
関連論文リスト
- Exploring Large Language Models for Product Attribute Value Identification [25.890927969633196]
製品属性値識別(PAVI)は、製品情報から属性とその値を自動的に識別する。
既存の手法は、BARTやT5のような微調整済みの言語モデルに依存している。
本稿では, LLaMA や Mistral などの大規模言語モデル (LLM) をデータ効率・ロバストなPAVI 代替品として検討する。
論文 参考訳(メタデータ) (2024-09-19T12:09:33Z) - Using LLMs for the Extraction and Normalization of Product Attribute Values [47.098255866050835]
本稿では,大規模言語モデル(LLM)を用いて,製品タイトルや記述から属性値の抽出と正規化を行う可能性について検討する。
実験のために、Web Data Commons - Product Attribute Value extract (WDC-PAVE)ベンチマークデータセットを紹介します。
論文 参考訳(メタデータ) (2024-03-04T15:39:59Z) - JPAVE: A Generation and Classification-based Model for Joint Product
Attribute Prediction and Value Extraction [59.94977231327573]
JPAVEと呼ばれる値生成/分類と属性予測を備えたマルチタスク学習モデルを提案する。
我々のモデルの2つの変種は、オープンワールドとクローズドワールドのシナリオのために設計されている。
公開データセットにおける実験結果は,強いベースラインと比較して,我々のモデルが優れていることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:36:16Z) - AE-smnsMLC: Multi-Label Classification with Semantic Matching and
Negative Label Sampling for Product Attribute Value Extraction [42.79022954630978]
商品属性値抽出は、製品検索やレコメンデーションなどのeコマースにおける多くの現実世界アプリケーションにおいて重要な役割を果たす。
以前の方法では、製品テキスト内の値の位置にもっとアノテーションを必要とするシーケンスラベリングタスクとして扱われていた。
属性値抽出のためのセマンティックマッチングと負ラベルサンプリングを用いた分類モデルを提案する。
論文 参考訳(メタデータ) (2023-10-11T02:22:28Z) - Product Information Extraction using ChatGPT [69.12244027050454]
本稿では,製品記述から属性/値対を抽出するChatGPTの可能性について検討する。
以上の結果から,ChatGPTは事前学習した言語モデルに類似した性能を達成できるが,微調整を行うにはトレーニングデータや計算処理がはるかに少ないことが示唆された。
論文 参考訳(メタデータ) (2023-06-23T09:30:01Z) - A Unified Generative Approach to Product Attribute-Value Identification [6.752749933406399]
本稿では,製品属性値識別(PAVI)タスクに対する生成的アプローチについて検討する。
我々は、予め訓練された生成モデルT5を微調整し、与えられた製品テキストから属性値対のセットをターゲットシーケンスとしてデコードする。
提案手法が既存の抽出法や分類法よりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2023-06-09T00:33:30Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - What Makes Good In-Context Examples for GPT-$3$? [101.99751777056314]
GPT-$3$はNLPタスクの広い範囲でその優れた性能のために多くの注目を集めています。
その成功にもかかわらず、我々はGPT-$3$の実証結果が文脈内例の選択に大きく依存していることを発見した。
本研究では,文脈内事例を適切に選択するためのより効果的な戦略が存在するかを検討する。
論文 参考訳(メタデータ) (2021-01-17T23:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。