Redundant string symmetry-based error correction: Demonstrations on quantum devices
- URL: http://arxiv.org/abs/2310.12854v2
- Date: Wed, 31 Jul 2024 16:13:06 GMT
- Title: Redundant string symmetry-based error correction: Demonstrations on quantum devices
- Authors: Zhangjie Qin, Daniel Azses, Eran Sela, Robert Raussendorf, V. W. Scarola,
- Abstract summary: Computational power in measurement-based quantum computing stems from the symmetry-protected topological (SPT) order of entangled resource states.
We introduce a quantum error correction approach using redundant nonlocal symmetry of the resource state.
We identify the underlying redundant-SPT order as error-protected degeneracies in the entanglement spectrum.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational power in measurement-based quantum computing stems from the symmetry-protected topological (SPT) order of entangled resource states. However, resource states are prone to preparation errors. We introduce a quantum error correction approach using redundant nonlocal symmetry of the resource state. We demonstrate it within a teleportation protocol based on extending the $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry of one-dimensional cluster states to other graph states. Qubit ZZ-crosstalk errors, which are prominent in quantum devices, degrade the teleportation fidelity of the usual cluster state. However, as we demonstrate on quantum hardware, once we grow graph states with redundant symmetry, perfect teleportation fidelity is restored. We identify the underlying redundant-SPT order as error-protected degeneracies in the entanglement spectrum.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Symmetry protected topological order as a requirement for
measurement-based quantum gate teleportation [0.0]
All known resource states for measurement-based quantum teleportation in correlation space possess symmetry protected topological order.
This work considers two families of one-dimensional qubit states to answer this question in the negative.
arXiv Detail & Related papers (2023-10-16T16:35:09Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Asymmetric node placement in fiber-based quantum networks [0.0]
Restrictions imposed by existing infrastructure can make it hard to ensure an even spacing between the nodes of future quantum networks.
We consider separately the placement of midpoint stations required for heralded entanglement generation, as well as of processing-node quantum repeaters in a chain.
We find that while the time required to perform one entangling attempt may increase linearly with the midpoint's asymmetry, the success probability and fidelity of heralded entanglement generation and the distribution time and error rate for repeater chains all have vanishing first derivatives with respect to the amount of asymmetry.
arXiv Detail & Related papers (2023-05-16T17:40:37Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Fidelity-based distance bounds for $N$-qubit approximate quantum error
correction [0.0]
Eastin-Knill theorem states that a quantum code cannot correct errors exactly, possess continuous symmetries, and implement a universal set of gates transversely.
It is common to employ a complementary measure of fidelity as a way to quantify quantum state distinguishability and benchmark approximations in error correction.
We address two distance measures based on the sub- and superfidelities as a way to bound error approximations, which in turn require a lower computational cost.
arXiv Detail & Related papers (2022-12-08T16:10:58Z) - The SWAP Imposter: Bidirectional Quantum Teleportation and its
Performance [6.345523830122166]
Bidirectional quantum teleportation is a fundamental protocol for exchanging quantum information between two parties.
We develop two different ways of quantifying the error of nonideal bidirectional teleportation.
We obtain semidefinite programming lower bounds on the error of nonideal bidirectional teleportation.
arXiv Detail & Related papers (2022-10-19T20:43:57Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Fusion-based quantum computation [43.642915252379815]
Fusion-based quantum computing (FBQC) is a model of universal quantum computation in which entangling measurements, called fusions, are performed on qubits of small constant-sized entangled resource states.
We introduce a stabilizer formalism for analyzing fault tolerance and computation in these schemes.
This framework naturally captures the error structure that arises in certain physical systems for quantum computing, such as photonics.
arXiv Detail & Related papers (2021-01-22T20:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.