Network-Aware AutoML Framework for Software-Defined Sensor Networks
- URL: http://arxiv.org/abs/2310.12914v2
- Date: Wed, 25 Oct 2023 23:24:57 GMT
- Title: Network-Aware AutoML Framework for Software-Defined Sensor Networks
- Authors: Emre Horsanali, Yagmur Yigit, Gokhan Secinti, Aytac Karameseoglu, and
Berk Canberk
- Abstract summary: We propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks.
Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments.
- Score: 3.050185169010028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the current detection solutions of distributed denial of service attacks
(DDoS) need additional infrastructures to handle high aggregate data rates,
they are not suitable for sensor networks or the Internet of Things. Besides,
the security architecture of software-defined sensor networks needs to pay
attention to the vulnerabilities of both software-defined networks and sensor
networks. In this paper, we propose a network-aware automated machine learning
(AutoML) framework which detects DDoS attacks in software-defined sensor
networks. Our framework selects an ideal machine learning algorithm to detect
DDoS attacks in network-constrained environments, using metrics such as
variable traffic load, heterogeneous traffic rate, and detection time while
preventing over-fitting. Our contributions are two-fold: (i) we first
investigate the trade-off between the efficiency of ML algorithms and
network/traffic state in the scope of DDoS detection. (ii) we design and
implement a software architecture containing open-source network tools, with
the deployment of multiple ML algorithms. Lastly, we show that under the denial
of service attacks, our framework ensures the traffic packets are still
delivered within the network with additional delays.
Related papers
- Preliminary study on artificial intelligence methods for cybersecurity threat detection in computer networks based on raw data packets [34.82692226532414]
In this paper, we investigate deep learning methodologies capable of detecting attacks in real-time directly from raw packet data within network traffic.
We propose a novel approach where packets are stacked into windows and separately recognised, with a 2D image representation suitable for processing with computer vision models.
arXiv Detail & Related papers (2024-07-24T15:04:00Z) - A Flow is a Stream of Packets: A Stream-Structured Data Approach for DDoS Detection [32.22817720403158]
We propose a new tree-based DDoS detection approach that operates on a flow as a stream structure.
Our approach matches or exceeds existing machine learning techniques' accuracy, including state-of-the-art deep learning methods.
arXiv Detail & Related papers (2024-05-12T09:29:59Z) - RIDE: Real-time Intrusion Detection via Explainable Machine Learning
Implemented in a Memristor Hardware Architecture [24.824596231020585]
We propose a packet-level network intrusion detection solution that makes use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding.
We show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level.
arXiv Detail & Related papers (2023-11-27T17:30:19Z) - Detection of DDoS Attacks in Software Defined Networking Using Machine
Learning Models [0.6193838300896449]
This paper investigates the effectiveness of machine learning algorithms to detect distributed denial-of-service (DDoS) attacks in software-defined networking (SDN) environments.
The results indicate that ML-based detection is a more accurate and effective method for identifying DDoS attacks in SDN.
arXiv Detail & Related papers (2023-03-11T22:56:36Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
This paper describes a conceptual design methodology to design distributed neural network architectures.
We show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss.
While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.
arXiv Detail & Related papers (2022-10-14T12:35:32Z) - A Comparative Analysis of Machine Learning Algorithms for Intrusion
Detection in Edge-Enabled IoT Networks [0.0]
Intrusion detection is one of the challenging issues in the area of network security.
In this paper, a comparative analysis of conventional machine learning classification algorithms has been performed.
It can be observed that Multi-Layer Perception (MLP) has dependencies between input and output and relies more on network configuration for intrusion detection.
arXiv Detail & Related papers (2021-11-02T05:58:07Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Darknet Traffic Big-Data Analysis and Network Management to Real-Time
Automating the Malicious Intent Detection Process by a Weight Agnostic Neural
Networks Framework [0.0]
We propose a novel darknet traffic analysis and network management framework to real-time automating the malicious intent detection process.
It is an effective and accurate computational intelligent tool for network traffic analysis, the demystification of malware traffic, and encrypted traffic identification in real-time.
arXiv Detail & Related papers (2021-02-16T19:03:25Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
This paper proposes SDS (Software Defined Security) as a means to provide an automated, flexible and scalable network defence system.
SDS will harness current advances in machine learning to design a CNN (Convolutional Neural Network) using NAS (Neural Architecture Search) to detect anomalous network traffic.
arXiv Detail & Related papers (2020-03-07T00:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.