Single-Mode Squeezed Light Generation and Tomography with an Integrated
Optical Parametric Oscillator
- URL: http://arxiv.org/abs/2310.12954v1
- Date: Thu, 19 Oct 2023 17:53:36 GMT
- Title: Single-Mode Squeezed Light Generation and Tomography with an Integrated
Optical Parametric Oscillator
- Authors: Taewon Park, Hubert S. Stokowski, Vahid Ansari, Samuel Gyger, Kevin K.
S. Multani, Oguz Tolga Celik, Alexander Y. Hwang, Devin J. Dean, Felix M.
Mayor, Timothy P. McKenna, Martin M. Fejer, Amir H. Safavi-Naeini
- Abstract summary: A key resource is squeezed light, where quantum noise is redistributed between optical quadratures.
We introduce a monolithic, chip-scale platform that exploits the $chi(2)$ nonlinearity of a thin-film lithium niobate resonator device.
Our work represents a substantial step toward compact and efficient quantum optical systems.
- Score: 31.874825130479174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum optical technologies promise advances in sensing, computing, and
communication. A key resource is squeezed light, where quantum noise is
redistributed between optical quadratures. We introduce a monolithic,
chip-scale platform that exploits the $\chi^{(2)}$ nonlinearity of a thin-film
lithium niobate (TFLN) resonator device to efficiently generate squeezed states
of light. Our system integrates all essential components -- except for the
laser and two detectors -- on a single chip with an area of one square
centimeter, significantly reducing the size, operational complexity, and power
consumption associated with conventional setups. Our work addresses challenges
that have limited previous integrated nonlinear photonic implementations that
rely on either $\chi^{(3)}$ nonlinear resonators or on integrated waveguide
$\chi^{(2)}$ parametric amplifiers. Using the balanced homodyne measurement
subsystem that we implemented on the same chip, we measure a squeezing of 0.55
dB and an anti-squeezing of 1.55 dB. We use 20 mW of input power to generate
the parametric oscillator pump field by employing second harmonic generation on
the same chip. Our work represents a substantial step toward compact and
efficient quantum optical systems posed to leverage the rapid advances in
integrated nonlinear and quantum photonics.
Related papers
- Quantum-enabled continuous microwave-to-optics frequency conversion [6.646547697436899]
A quantum interface between microwave and optical photons is essential for entangling remote superconducting quantum processors.
We present a platform that meets these criteria, utilizing a combination of electrostatic and optomechanical interactions in devices made entirely from crystalline silicon.
arXiv Detail & Related papers (2024-06-04T18:34:01Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - A single-phonon directional coupler [0.0]
In this work, we demonstrate for the first time a 4-port directional coupler for quantum mechanical excitations.
By sending a single-phonon Fock state onto one of these phononic splitters, we demonstrate the capability of using the directional coupler directly in the quantum regime.
arXiv Detail & Related papers (2023-12-07T16:36:17Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Directional Josephson traveling-wave parametric amplifier via
non-Hermitian topology [58.720142291102135]
Low-noise microwave amplification is crucial for detecting weak signals in quantum technologies and radio astronomy.
Current amplifiers do not satisfy all these requirements, severely limiting the scalability of superconducting quantum devices.
Here, we demonstrate the feasibility of building a near-ideal quantum amplifier using a homogeneous Josephson junction array and the non-trivial topology of its dynamics.
arXiv Detail & Related papers (2022-07-27T18:07:20Z) - Fully on-chip photonic turnkey quantum source for entangled qubit/qudit
state generation [0.0]
Integrated photonics has recently become a leading platform for the realization and processing of optical entangled quantum states in chip formats.
Here we demonstrate a fully integrated quantum light source, which overcomes these challenges through the combined integration of a laser cavity.
The hybrid quantum source employs an electrically-pumped InP gain section and a Si$_3$N$_4$ low-loss microring filter system.
arXiv Detail & Related papers (2022-06-17T12:14:21Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - Ultra-broadband quadrature squeezing with thin-film lithium niobate
nanophotonics [0.0]
In this letter, we demonstrate squeezed light generation with thin-film lithium niobate integrated photonics.
We measure 0.5-0.09dB quadrature squeezing(3 dB inferred on-chip)
This work represents a significant step towards the on-chip implementation of continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-07-05T19:59:02Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.