Quantum-enabled continuous microwave-to-optics frequency conversion
- URL: http://arxiv.org/abs/2406.02704v1
- Date: Tue, 4 Jun 2024 18:34:01 GMT
- Title: Quantum-enabled continuous microwave-to-optics frequency conversion
- Authors: Han Zhao, William David Chen, Abhishek Kejriwal, Mohammad Mirhosseini,
- Abstract summary: A quantum interface between microwave and optical photons is essential for entangling remote superconducting quantum processors.
We present a platform that meets these criteria, utilizing a combination of electrostatic and optomechanical interactions in devices made entirely from crystalline silicon.
- Score: 6.646547697436899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum interface between microwave and optical photons is essential for entangling remote superconducting quantum processors. To preserve fragile quantum states, a transducer must operate efficiently while generating less than one photon of noise referred to its input. Here, we present a platform that meets these criteria, utilizing a combination of electrostatic and optomechanical interactions in devices made entirely from crystalline silicon. This platform's small mechanical dissipation and low optical absorption enable ground-state radiative cooling, resulting in quantum-enabled operation with a continuous laser drive. Under the optimal settings for high efficiency (low noise), we measure an external efficiency of $2.2\%$ ($0.47\%$) and an input-referred added noise of $0.94$ ($0.58$) in microwave-to-optics conversion. We quantify the transducer throughput using the efficiency-bandwidth product, finding it exceeds previous demonstrations with similar noise performance by approximately two orders of magnitude, thereby paving a practical path to interconnecting remote superconducting qubits.
Related papers
- Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - Terahertz-Mediated Microwave-to-Optical Transduction [0.0]
Transduction of quantum signals between the microwave and the optical ranges will unlock powerful hybrid quantum systems.
Most microwave-to-optical quantum transducers suffer from thermal noise due to pump absorption.
We analyze the coupled thermal and wave dynamics in electro-optic transducers that use a two-step scheme based on an intermediate frequency state in the THz range.
arXiv Detail & Related papers (2023-07-07T19:31:39Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - High efficiency coherent microwave-to-optics conversion via off-resonant
scattering [5.639495736553396]
We report a coherent microwave-to-optics transduction using Rydberg atoms and off-resonant scattering technique.
The high conversion efficiency is maintained for microwave photons range from thousands to about 50.
arXiv Detail & Related papers (2022-03-08T16:09:12Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.