論文の概要: Exploring Invariance in Images through One-way Wave Equations
- arxiv url: http://arxiv.org/abs/2310.12976v2
- Date: Tue, 15 Oct 2024 22:26:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:39:27.271787
- Title: Exploring Invariance in Images through One-way Wave Equations
- Title(参考訳): 片方向波動方程式による画像の不変性探索
- Authors: Yinpeng Chen, Dongdong Chen, Xiyang Dai, Mengchen Liu, Yinan Feng, Youzuo Lin, Lu Yuan, Zicheng Liu,
- Abstract要約: 本稿では,画像画像上の不等式が一方向の波動方程式と潜時速度の組を共有していることを実証的に明らかにする。
本稿では,各画像が対応する初期条件に符号化される直感的なエンコーダ・デコーダ・フレームワークを用いて実演する。
- 参考スコア(独自算出の注目度): 96.90549064390608
- License:
- Abstract: In this paper, we empirically reveal an invariance over images-images share a set of one-way wave equations with latent speeds. Each image is uniquely associated with a solution to these wave equations, allowing for its reconstruction with high fidelity from an initial condition. We demonstrate it using an intuitive encoder-decoder framework where each image is encoded into its corresponding initial condition (a single vector). Subsequently, the initial condition undergoes a specialized decoder, transforming the one-way wave equations into a first-order norm + linear autoregressive process. This process propagates the initial condition along the x and y directions, generating a high-resolution feature map (up to the image resolution), followed by a few convolutional layers to reconstruct image pixels. The revealed invariance, rooted in the shared wave equations, offers a fresh perspective for comprehending images, establishing a promising avenue for further exploration.
- Abstract(参考訳): 本稿では,画像画像上の不等式が一方向の波動方程式と潜時速度の組を共有していることを実証的に明らかにする。
各画像はこれらの波動方程式の解と一意に関連付けられており、初期状態から高い忠実度で再構成することができる。
本稿では,各画像が対応する初期条件(単一ベクトル)に符号化される,直感的なエンコーダ・デコーダ・フレームワークを用いて実演する。
その後、初期条件は特殊デコーダを実行し、一方の波動方程式を1次ノルム+線形自己回帰過程に変換する。
このプロセスは、x方向とy方向に沿って初期条件を伝搬し、高解像度の特徴写像(画像解像度まで)を生成し、その後、画像ピクセルを再構成するいくつかの畳み込み層を生成する。
共有波動方程式に根ざした明らかな不変性は、画像の解釈に新たな視点を与え、さらなる探索のための有望な道を確立する。
関連論文リスト
- Wavelets Are All You Need for Autoregressive Image Generation [1.187456026346823]
本稿では,2つの主成分をベースとした自己回帰画像生成手法を提案する。
1つ目はウェーブレット画像符号化で、画像の視覚的詳細を粗いものから細部までトークン化することができる。
2つ目は、アーキテクチャが再設計され、トークンシーケンスに最適化された言語トランスフォーマーの変種である。
論文 参考訳(メタデータ) (2024-06-28T15:32:59Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Improving Denoising Diffusion Models via Simultaneous Estimation of
Image and Noise [15.702941058218196]
本稿では,逆拡散過程によって生成される画像の速度と品質の向上を目的とした2つの重要なコントリビューションを紹介する。
最初のコントリビューションは、画像と雑音の間の四分円弧上の角度で拡散過程を再パラメータ化することである。
2つ目のコントリビューションは、私たちのネットワークを使ってイメージ(mathbfx_0$)とノイズ(mathbfepsilon$)を直接見積もることです。
論文 参考訳(メタデータ) (2023-10-26T05:43:07Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Alternating Phase Langevin Sampling with Implicit Denoiser Priors for
Phase Retrieval [1.7767466724342065]
本稿では,従来のフレームワークに組み込んだ位相探索問題の解法を提案する。
位相探索のための性能記述に基づくアルゴリズムと比較し、分布内画像と分布外画像の顕著な測定結果と競合する性能を示す。
論文 参考訳(メタデータ) (2022-11-02T05:08:50Z) - Regularization via deep generative models: an analysis point of view [8.818465117061205]
本稿では, イメージングにおける逆問題(例えば, デブロアリングやインペインティング)を, 深部生成ニューラルネットワークを用いて正則化する新しい手法を提案する。
多くの場合、我々の技術はパフォーマンスの明確な改善を実現し、より堅牢であるように思える。
論文 参考訳(メタデータ) (2021-01-21T15:04:57Z) - Spatially-Adaptive Pixelwise Networks for Fast Image Translation [57.359250882770525]
高速かつ効率的な画像-画像変換を目的とした新しいジェネレータアーキテクチャを提案する。
私たちはピクセルワイズネットワークを使用します。つまり、各ピクセルは他のピクセルとは独立して処理されます。
私たちのモデルは最先端のベースラインよりも最大18倍高速です。
論文 参考訳(メタデータ) (2020-12-05T10:02:03Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - End-to-end Interpretable Learning of Non-blind Image Deblurring [102.75982704671029]
非ブラインド画像のデブロワーリングは、通常、対応するシャープ画像の勾配に関する自然の先行によって正規化される線形最小二乗問題として定式化される。
本稿では,(既知の)ぼかしと自然像前のカーネルの逆フィルタを用いて,リチャードソン解法を事前条件として提案する。
論文 参考訳(メタデータ) (2020-07-03T15:45:01Z) - Class-Specific Blind Deconvolutional Phase Retrieval Under a Generative
Prior [8.712404218757733]
この問題はフーリエ・プチコグラフィー、X線結晶学、可視光通信など様々な画像モダリティで発生する。
本稿では,事前訓練された2つの深層生成ネットワークの下での交互勾配降下アルゴリズムを用いて,この逆問題の解法を提案する。
提案アルゴリズムは,前向き測定モデルを説明する各前駆体の範囲内で,シャープな画像とぼやけたカーネルを見つけ出そうとする。
論文 参考訳(メタデータ) (2020-02-28T07:36:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。