Compositional preference models for aligning LMs
- URL: http://arxiv.org/abs/2310.13011v2
- Date: Thu, 14 Mar 2024 18:07:10 GMT
- Title: Compositional preference models for aligning LMs
- Authors: Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Marc Dymetman,
- Abstract summary: Compositional Preference Models (CPMs) are a framework that decomposes one global preference assessment into several interpretable features.
CPMs allow to control which properties of the preference data are used to train the preference model and to build it based on features that are believed to underlie the human preference judgment.
- Score: 15.036426712762147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As language models (LMs) become more capable, it is increasingly important to align them with human preferences. However, the dominant paradigm for training Preference Models (PMs) for that purpose suffers from fundamental limitations, such as lack of transparency and scalability, along with susceptibility to overfitting the preference dataset. We propose Compositional Preference Models (CPMs), a novel PM framework that decomposes one global preference assessment into several interpretable features, obtains scalar scores for these features from a prompted LM, and aggregates these scores using a logistic regression classifier. Through these simple steps, CPMs allow to control which properties of the preference data are used to train the preference model and to build it based on features that are believed to underlie the human preference judgment. Our experiments show that CPMs not only improve generalization and are more robust to overoptimization than standard PMs, but also that best-of-n samples obtained using CPMs tend to be preferred over samples obtained using conventional PMs. Overall, our approach demonstrates the benefits of endowing PMs with priors about which features determine human preferences while relying on LM capabilities to extract those features in a scalable and robust way.
Related papers
- Intuitionistic Fuzzy Sets for Large Language Model Data Annotation: A Novel Approach to Side-by-Side Preference Labeling [0.0]
This paper introduces a novel framework based on intuitionistic fuzzy sets (IFS) for modeling and aggregating human preferences in large language models (LLMs)<n>Our approach captures not only the degree of preference but also the uncertainty and hesitation inherent in human judgment through membership, non-membership, and hesitation degrees.<n> Experimental validation on multiple datasets demonstrates that our IFS-based approach significantly improves annotation consistency, reduces annotator fatigue, and produces higher-quality preference data.
arXiv Detail & Related papers (2025-05-30T04:20:00Z) - Leveraging Robust Optimization for LLM Alignment under Distribution Shifts [52.983390470606146]
Preference alignment methods are increasingly critical for steering large language models to generate outputs consistent with human values.<n>We propose a novel distribution-aware optimization framework that improves preference alignment despite such shifts.
arXiv Detail & Related papers (2025-04-08T09:14:38Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.
Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.
We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback [87.37721254914476]
We introduce a routing framework that combines inputs from humans and LMs to achieve better annotation quality.
We train a performance prediction model to predict a reward model's performance on an arbitrary combination of human and LM annotations.
We show that the selected hybrid mixture achieves better reward model performance compared to using either one exclusively.
arXiv Detail & Related papers (2024-10-24T20:04:15Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
We propose a general framework -- Recommendation with smoothing personalized Preference Optimization (RosePO)
RosePO better aligns with customized human values during the post-training stage.
Evaluation on three real-world datasets demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2024-10-16T12:54:34Z) - General Preference Modeling with Preference Representations for Aligning Language Models [51.14207112118503]
We introduce preference representation learning, an approach that embeds responses into a latent space to capture intricate preference structures efficiently.
We also propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback.
Our method may enhance the alignment of foundation models with nuanced human values.
arXiv Detail & Related papers (2024-10-03T04:22:55Z) - Model-based Preference Optimization in Abstractive Summarization without Human Feedback [5.438770095369458]
We introduce Model-based Preference Optimization (MPO) to fine-tune Large Language Models for improved summarization abilities without any human feedback.
Our experiments on standard summarization datasets and various metrics demonstrate that our proposed MPO significantly enhances the quality of generated summaries without relying on human feedback.
arXiv Detail & Related papers (2024-09-27T10:35:45Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Preference Alignment Improves Language Model-Based TTS [76.70693823683091]
preference alignment algorithms adjust LMs to align with the preferences of reward models, enhancing the desirability of the generated content.
With a 1.15B parameter LM-based TTS model, we demonstrate that preference alignment consistently improves intelligibility, speaker similarity, and proxy subjective evaluation scores.
arXiv Detail & Related papers (2024-09-19T01:58:19Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
We show that large language models (LLMs) exhibit preference biases and worrying sensitivity to prompt designs.
Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO.
arXiv Detail & Related papers (2024-06-17T09:48:53Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - Unified Preference Optimization: Language Model Alignment Beyond the Preference Frontier [0.5120567378386615]
We propose a unified approach to aligning large language models (LLMs)
Based on a simple decomposition of preference and auxiliary objectives, we allow for tuning LLMs to optimize user and designer preferences.
arXiv Detail & Related papers (2024-05-28T08:35:48Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Dissecting Human and LLM Preferences [80.55271307662365]
We find that humans are less sensitive to errors, favor responses that support their stances, and show clear dislike when models admit their limits.
advanced LLMs like GPT-4-Turbo emphasize correctness, clarity, and harmlessness more.
We show that preference-based evaluation can be intentionally manipulated.
arXiv Detail & Related papers (2024-02-17T14:34:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.