Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm
- URL: http://arxiv.org/abs/2310.13019v4
- Date: Fri, 30 Aug 2024 05:50:56 GMT
- Title: Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm
- Authors: S. M. Fazle Rabby Labib, Joyanta Jyoti Mondal, Meem Arafat Manab, Sarfaraz Newaz, Xi Xiao,
- Abstract summary: The susceptibility of deep neural networks (DNNs) to adversarial attacks undermines their reliability across numerous applications.
We introduce the Enhanced Targeted DeepFool (ET DeepFool) algorithm, an evolution of DeepFool.
Our empirical investigations demonstrate the superiority of this refined approach in maintaining the integrity of images.
- Score: 6.515472477685614
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The susceptibility of deep neural networks (DNNs) to adversarial attacks undermines their reliability across numerous applications, underscoring the necessity for an in-depth exploration of these vulnerabilities and the formulation of robust defense strategies. The DeepFool algorithm by Moosavi-Dezfooli et al. (2016) represents a pivotal step in identifying minimal perturbations required to induce misclassification of input images. Nonetheless, its generic methodology falls short in scenarios necessitating targeted interventions. Additionally, previous research studies have predominantly concentrated on the success rate of attacks without adequately addressing the consequential distortion of images, the maintenance of image quality, or the confidence threshold required for misclassification. To bridge these gaps, we introduce the Enhanced Targeted DeepFool (ET DeepFool) algorithm, an evolution of DeepFool that not only facilitates the specification of desired misclassification targets but also incorporates a configurable minimum confidence score. Our empirical investigations demonstrate the superiority of this refined approach in maintaining the integrity of images and minimizing perturbations across a variety of DNN architectures. Unlike previous iterations, such as the Targeted DeepFool by Gajjar et al. (2022), our method grants unparalleled control over the perturbation process, enabling precise manipulation of model responses. Preliminary outcomes reveal that certain models, including AlexNet and the advanced Vision Transformer, display commendable robustness to such manipulations. This discovery of varying levels of model robustness, as unveiled through our confidence level adjustments, could have far-reaching implications for the field of image recognition. Our code will be made public upon acceptance of the paper.
Related papers
- Perturb, Attend, Detect and Localize (PADL): Robust Proactive Image Defense [5.150608040339816]
We introduce PADL, a new solution able to generate image-specific perturbations using a symmetric scheme of encoding and decoding based on cross-attention.
Our method generalizes to a range of unseen models with diverse architectural designs, such as StarGANv2, BlendGAN, DiffAE, StableDiffusion and StableDiffusionXL.
arXiv Detail & Related papers (2024-09-26T15:16:32Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
Deepfakes, malicious visual contents created by generative models, pose an increasingly harmful threat to society.
To proactively mitigate deepfake damages, recent studies have employed adversarial perturbation to disrupt deepfake model outputs.
We propose a simple yet effective disruption method called Latent Ensemble ATtack (LEAT), which attacks the independent latent encoding process.
arXiv Detail & Related papers (2023-07-04T07:00:37Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Meta Adversarial Perturbations [66.43754467275967]
We show the existence of a meta adversarial perturbation (MAP)
MAP causes natural images to be misclassified with high probability after being updated through only a one-step gradient ascent update.
We show that these perturbations are not only image-agnostic, but also model-agnostic, as a single perturbation generalizes well across unseen data points and different neural network architectures.
arXiv Detail & Related papers (2021-11-19T16:01:45Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - A Simple Framework to Quantify Different Types of Uncertainty in Deep
Neural Networks for Image Classification [0.0]
Quantifying uncertainty in a model's predictions is important as it enables the safety of an AI system to be increased.
This is crucial for applications where the cost of an error is high, such as in autonomous vehicle control, medical image analysis, financial estimations or legal fields.
We propose a complete framework to capture and quantify three known types of uncertainty in Deep Neural Networks for the task of image classification.
arXiv Detail & Related papers (2020-11-17T15:36:42Z) - Solving Inverse Problems With Deep Neural Networks -- Robustness
Included? [3.867363075280544]
Recent works have pointed out instabilities of deep neural networks for several image reconstruction tasks.
In analogy to adversarial attacks in classification, it was shown that slight distortions in the input domain may cause severe artifacts.
This article sheds new light on this concern, by conducting an extensive study of the robustness of deep-learning-based algorithms for solving underdetermined inverse problems.
arXiv Detail & Related papers (2020-11-09T09:33:07Z) - Efficient detection of adversarial images [2.6249027950824506]
Some or all pixel values of an image are modified by an external attacker, so that the change is almost invisible to the human eye.
This paper first proposes a novel pre-processing technique that facilitates the detection of such modified images.
An adaptive version of this algorithm is proposed where a random number of perturbations are chosen adaptively.
arXiv Detail & Related papers (2020-07-09T05:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.