Interpreting CLIP: Insights on the Robustness to ImageNet Distribution Shifts
- URL: http://arxiv.org/abs/2310.13040v2
- Date: Thu, 07 Nov 2024 15:40:09 GMT
- Title: Interpreting CLIP: Insights on the Robustness to ImageNet Distribution Shifts
- Authors: Jonathan CrabbĂ©, Pau RodrĂguez, Vaishaal Shankar, Luca Zappella, Arno Blaas,
- Abstract summary: We probe the representation spaces of 16 robust zero-shot CLIP vision encoders with various backbones and pretraining sets.
We detect the presence of outlier features in robust zero-shot CLIP vision encoders, which to the best of our knowledge is the first time these are observed in non-transformer models.
We find the existence of outlier features to be an indication of ImageNet shift robustness in models, since we only find them in robust models in our analysis.
- Score: 22.74552390076515
- License:
- Abstract: What distinguishes robust models from non-robust ones? While for ImageNet distribution shifts it has been shown that such differences in robustness can be traced back predominantly to differences in training data, so far it is not known what that translates to in terms of what the model has learned. In this work, we bridge this gap by probing the representation spaces of 16 robust zero-shot CLIP vision encoders with various backbones (ResNets and ViTs) and pretraining sets (OpenAI, LAION-400M, LAION-2B, YFCC15M, CC12M and {DataComp}), and comparing them to the representation spaces of less robust models with identical backbones, but different (pre)training sets or objectives (CLIP pretraining on ImageNet-Captions, and supervised training or finetuning on ImageNet).Through this analysis, we generate three novel insights. Firstly, we detect the presence of outlier features in robust zero-shot CLIP vision encoders, which to the best of our knowledge is the first time these are observed in non-language and non-transformer models. Secondly, we find the existence of outlier features to be an indication of ImageNet shift robustness in models, since we only find them in robust models in our analysis. Lastly, we also investigate the number of unique encoded concepts in the representation space and find zero-shot CLIP models to encode a higher number of unique concepts in their representation space. However, we do not find this to be an indicator of ImageNet shift robustness and hypothesize that it is rather related to the language supervision. Since the presence of outlier features can be detected without access to any data from shifted datasets, we believe that they could be a useful tool for practitioners to get a feeling for the distribution shift robustness of a pretrained model during deployment.
Related papers
- FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object [78.58860252442045]
We introduce generative model as a data source for hard images that benchmark deep models' robustness.
We are able to generate images with more diversified backgrounds, textures, and materials than any prior work, where we term this benchmark as ImageNet-D.
Our work suggests that diffusion models can be an effective source to test vision models.
arXiv Detail & Related papers (2024-03-27T17:23:39Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
The aim of this work is to explore the potential of pre-trained vision-language models (VLMs) for universal detection of AI-generated images.
We develop a lightweight detection strategy based on CLIP features and study its performance in a wide variety of challenging scenarios.
arXiv Detail & Related papers (2023-11-30T21:11:20Z) - ConvNet vs Transformer, Supervised vs CLIP: Beyond ImageNet Accuracy [27.75360812109922]
In this work, we conduct an in-depth comparative analysis of model behaviors beyond ImageNet accuracy.
Although our selected models have similar ImageNet accuracies and compute requirements, we find that they differ in many other aspects.
This diversity in model characteristics, not captured by traditional metrics, highlights the need for more nuanced analysis.
arXiv Detail & Related papers (2023-11-15T18:56:51Z) - With a Little Help from your own Past: Prototypical Memory Networks for
Image Captioning [47.96387857237473]
We devise a network which can perform attention over activations obtained while processing other training samples.
Our memory models the distribution of past keys and values through the definition of prototype vectors.
We demonstrate that our proposal can increase the performance of an encoder-decoder Transformer by 3.7 CIDEr points both when training in cross-entropy only and when fine-tuning with self-critical sequence training.
arXiv Detail & Related papers (2023-08-23T18:53:00Z) - ImageNet-E: Benchmarking Neural Network Robustness via Attribute Editing [45.14977000707886]
Higher accuracy on ImageNet usually leads to better robustness against different corruptions.
We create a toolkit for object editing with controls of backgrounds, sizes, positions, and directions.
We evaluate the performance of current deep learning models, including both convolutional neural networks and vision transformers.
arXiv Detail & Related papers (2023-03-30T02:02:32Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST) is a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images.
MUST improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification.
arXiv Detail & Related papers (2022-06-07T02:03:06Z) - The Role of ImageNet Classes in Fr\'echet Inception Distance [33.47601032254247]
Inception Distance (FID) is a metric for quantifying the distance between two distributions of images.
We observe that FID is essentially a distance between sets of ImageNet class probabilities.
Our results suggest caution against over-interpreting FID improvements, and underline the need for distribution metrics that are more perceptually uniform.
arXiv Detail & Related papers (2022-03-11T15:50:06Z) - Vision Models Are More Robust And Fair When Pretrained On Uncurated
Images Without Supervision [38.22842778742829]
Discriminative self-supervised learning allows training models on any random group of internet images.
We train models on billions of random images without any data pre-processing or prior assumptions about what we want the model to learn.
We extensively study and validate our model performance on over 50 benchmarks including fairness, to distribution shift, geographical diversity, fine grained recognition, image copy detection and many image classification datasets.
arXiv Detail & Related papers (2022-02-16T22:26:47Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.