PatchCURE: Improving Certifiable Robustness, Model Utility, and Computation Efficiency of Adversarial Patch Defenses
- URL: http://arxiv.org/abs/2310.13076v2
- Date: Tue, 2 Apr 2024 14:14:16 GMT
- Title: PatchCURE: Improving Certifiable Robustness, Model Utility, and Computation Efficiency of Adversarial Patch Defenses
- Authors: Chong Xiang, Tong Wu, Sihui Dai, Jonathan Petit, Suman Jana, Prateek Mittal,
- Abstract summary: State-of-the-art defenses against adversarial patch attacks can now achieve strong certifiable robustness with a marginal drop in model utility.
This impressive performance typically comes at the cost of 10-100x more inference-time computation compared to undefended models.
We propose a defense framework named PatchCURE to approach this trade-off problem.
- Score: 46.098482151215556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art defenses against adversarial patch attacks can now achieve strong certifiable robustness with a marginal drop in model utility. However, this impressive performance typically comes at the cost of 10-100x more inference-time computation compared to undefended models -- the research community has witnessed an intense three-way trade-off between certifiable robustness, model utility, and computation efficiency. In this paper, we propose a defense framework named PatchCURE to approach this trade-off problem. PatchCURE provides sufficient "knobs" for tuning defense performance and allows us to build a family of defenses: the most robust PatchCURE instance can match the performance of any existing state-of-the-art defense (without efficiency considerations); the most efficient PatchCURE instance has similar inference efficiency as undefended models. Notably, PatchCURE achieves state-of-the-art robustness and utility performance across all different efficiency levels, e.g., 16-23% absolute clean accuracy and certified robust accuracy advantages over prior defenses when requiring computation efficiency to be close to undefended models. The family of PatchCURE defenses enables us to flexibly choose appropriate defenses to satisfy given computation and/or utility constraints in practice.
Related papers
- DefensiveDR: Defending against Adversarial Patches using Dimensionality Reduction [4.4100683691177816]
Adrial patch-based attacks have shown to be a major deterrent towards the reliable use of machine learning models.
We propose textitDefensiveDR, a practical mechanism using a dimensionality reduction technique to thwart such patch-based attacks.
arXiv Detail & Related papers (2023-11-20T22:01:31Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - PatchCensor: Patch Robustness Certification for Transformers via
Exhaustive Testing [7.88628640954152]
Vision Transformer (ViT) is known to be highly nonlinear like other classical neural networks and could be easily fooled by both natural and adversarial patch perturbations.
This limitation could pose a threat to the deployment of ViT in the real industrial environment, especially in safety-critical scenarios.
We propose PatchCensor, aiming to certify the patch robustness of ViT by applying exhaustive testing.
arXiv Detail & Related papers (2021-11-19T23:45:23Z) - ROPUST: Improving Robustness through Fine-tuning with Photonic
Processors and Synthetic Gradients [65.52888259961803]
We introduce ROPUST, a simple and efficient method to leverage robust pre-trained models and increase their robustness.
We test our method on nine different models against four attacks in RobustBench, consistently improving over state-of-the-art performance.
We show that even with state-of-the-art phase retrieval techniques, ROPUST remains an effective defense.
arXiv Detail & Related papers (2021-07-06T12:03:36Z) - Efficient Certified Defenses Against Patch Attacks on Image Classifiers [13.858624044986815]
BagCert is a novel combination of model architecture and certification procedure that allows efficient certification.
On CIFAR10, BagCert certifies examples in 43 seconds on a single GPU and obtains 86% clean and 60% certified accuracy against 5x5 patches.
arXiv Detail & Related papers (2021-02-08T12:11:41Z) - PatchGuard: A Provably Robust Defense against Adversarial Patches via
Small Receptive Fields and Masking [46.03749650789915]
Localized adversarial patches aim to induce misclassification in machine learning models by arbitrarily modifying pixels within a restricted region of an image.
We propose a general defense framework called PatchGuard that can achieve high provable robustness while maintaining high clean accuracy against localized adversarial patches.
arXiv Detail & Related papers (2020-05-17T03:38:34Z) - (De)Randomized Smoothing for Certifiable Defense against Patch Attacks [136.79415677706612]
We introduce a certifiable defense against patch attacks that guarantees for a given image and patch attack size.
Our method is related to the broad class of randomized smoothing robustness schemes.
Our results effectively establish a new state-of-the-art of certifiable defense against patch attacks on CIFAR-10 and ImageNet.
arXiv Detail & Related papers (2020-02-25T08:39:46Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
Adversarial training is one of the most effective defenses against adversarial attacks for deep learning models.
In this work, we advocate incorporating the hypersphere embedding mechanism into the AT procedure.
We validate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2020-02-20T08:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.