論文の概要: Auto-Instruct: Automatic Instruction Generation and Ranking for
Black-Box Language Models
- arxiv url: http://arxiv.org/abs/2310.13127v1
- Date: Thu, 19 Oct 2023 19:52:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 01:28:22.968644
- Title: Auto-Instruct: Automatic Instruction Generation and Ranking for
Black-Box Language Models
- Title(参考訳): 自動インストラクション:ブラックボックス言語モデルの自動インストラクション生成とランク付け
- Authors: Zhihan Zhang, Shuohang Wang, Wenhao Yu, Yichong Xu, Dan Iter, Qingkai
Zeng, Yang Liu, Chenguang Zhu, Meng Jiang
- Abstract要約: 大規模言語モデル(LLM)は、自然言語命令に従うことで幅広いタスクを実行できる。
LLMに提供される命令の質を自動改善する新しい手法であるAuto-Instructを導入する。
118のアウトオブドメインタスクの実験では、Auto-Instructは人間による命令と既存のLCM生成命令のベースラインを超越している。
- 参考スコア(独自算出の注目度): 91.02730155418699
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) can perform a wide range of tasks by following
natural language instructions, without the necessity of task-specific
fine-tuning. Unfortunately, the performance of LLMs is greatly influenced by
the quality of these instructions, and manually writing effective instructions
for each task is a laborious and subjective process. In this paper, we
introduce Auto-Instruct, a novel method to automatically improve the quality of
instructions provided to LLMs. Our method leverages the inherent generative
ability of LLMs to produce diverse candidate instructions for a given task, and
then ranks them using a scoring model trained on a variety of 575 existing NLP
tasks. In experiments on 118 out-of-domain tasks, Auto-Instruct surpasses both
human-written instructions and existing baselines of LLM-generated
instructions. Furthermore, our method exhibits notable generalizability even
with other LLMs that are not incorporated into its training process.
- Abstract(参考訳): 大規模言語モデル(LLM)は、タスク固有の微調整を必要とせず、自然言語命令に従うことで幅広いタスクを実行できる。
残念ながら、LLMの性能はこれらの命令の質に大きく影響され、各タスクに効果的な命令を手作業で書くことは、手間がかかり、主観的なプロセスである。
本稿では,LLMに提供される命令の質を自動改善する新しい手法であるAuto-Instructを紹介する。
提案手法は, LLMの固有生成能力を生かして, 与えられたタスクに対する多様な候補命令を生成し, 既存の575個のNLPタスクに基づいて学習したスコアモデルを用いてランク付けする。
118のアウトオブドメインタスクの実験では、Auto-Instructは人間による命令と既存のLCM生成命令のベースラインを超越している。
さらに,本手法はトレーニングプロセスに組み込まれていない他のLSMにおいても顕著な一般化性を示す。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs [47.94710556156627]
MIA-Benchは、マルチモーダルな大規模言語モデル(MLLM)を、複雑な命令に厳密に準拠する能力に基づいて評価するために設計されたベンチマークである。
私たちのベンチマークでは、400のイメージプロンプトペアで構成されており、それぞれが階層化された命令に対するモデルのコンプライアンスに挑戦するために作られています。
論文 参考訳(メタデータ) (2024-07-01T17:53:35Z) - Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning [12.651588927599441]
インストラクションチューニングは、大きな言語モデルにオープンドメイン命令と人間優先応答を合わせることを目的としている。
学生のLLMの追従が難しい命令を選択するために,TAPIR(Task-Aware Curriculum Planning for Instruction Refinement)を導入する。
学生の能力のバランスをとるために、トレーニングセット内のタスク分布は、対応するタスクに応じて自動的に調整された応答で調整される。
論文 参考訳(メタデータ) (2024-05-22T08:38:26Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - RoCoIns: Enhancing Robustness of Large Language Models through
Code-Style Instructions [43.19966425619236]
より構造的であいまいなコードスタイルの命令を使用して、典型的には自然言語命令を置き換える。
そこで本研究では,クリーンサンプルと逆サンプルの両方を用いて,コンテキスト内デモを構成する新しい手法を提案する。
8つのロバスト性データセットの実験により、我々の手法は自然言語命令によるLLMよりも一貫して優れていた。
論文 参考訳(メタデータ) (2024-02-26T09:30:55Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - CoachLM: Automatic Instruction Revisions Improve the Data Quality in LLM Instruction Tuning [32.54921739100195]
提案するCoachLMは,データセット内のサンプルを自動的に修正することで,命令データセットの品質を高める新しい手法である。
CoachLMは、人間の専門家によって改訂されたサンプルから訓練され、データセットの高品質なサンプルの割合が17.7%から78.9%に大幅に増加した。
結果から,CoachLMは命令調整LDMの指示追従能力を平均29.9%改善することがわかった。
論文 参考訳(メタデータ) (2023-11-22T09:04:57Z) - Learning to Plan with Natural Language [111.76828049344839]
大規模言語モデル(LLM)は、様々な基本自然言語タスクにおいて顕著な性能を示している。
複雑なタスクを完了するためには、ステップごとに特定のソリューションを生成するためにLCMをガイドするタスクの計画が必要です。
本研究では,(1)第1学習課題計画フェーズにおいて,LCMが学習エラーフィードバックから導出するように促した新たなステップバイステップのソリューションと行動指示を用いてタスク計画を反復的に更新する,という2つの段階を含む学習計画手法を提案する。
論文 参考訳(メタデータ) (2023-04-20T17:09:12Z) - Large Language Models Are Human-Level Prompt Engineers [31.98042013940282]
本稿では,自動命令生成と選択のための自動プロンプトエンジニアを提案する。
APEを駆使したプロンプトは、真理性や情報性に対するステアモデルに適用可能であることを示す。
論文 参考訳(メタデータ) (2022-11-03T15:43:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。