Mean Estimation Under Heterogeneous Privacy Demands
- URL: http://arxiv.org/abs/2310.13137v1
- Date: Thu, 19 Oct 2023 20:29:19 GMT
- Title: Mean Estimation Under Heterogeneous Privacy Demands
- Authors: Syomantak Chaudhuri, Konstantin Miagkov, Thomas A. Courtade
- Abstract summary: This work considers the problem of mean estimation, where each user can impose their own privacy level.
The algorithm we propose is shown to be minimax optimal and has a near-linear run-time.
Users with less but differing privacy requirements are all given more privacy than they require, in equal amounts.
- Score: 5.755004576310333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential Privacy (DP) is a well-established framework to quantify privacy
loss incurred by any algorithm. Traditional formulations impose a uniform
privacy requirement for all users, which is often inconsistent with real-world
scenarios in which users dictate their privacy preferences individually. This
work considers the problem of mean estimation, where each user can impose their
own distinct privacy level. The algorithm we propose is shown to be minimax
optimal and has a near-linear run-time. Our results elicit an interesting
saturation phenomenon that occurs. Namely, the privacy requirements of the most
stringent users dictate the overall error rates. As a consequence, users with
less but differing privacy requirements are all given more privacy than they
require, in equal amounts. In other words, these privacy-indifferent users are
given a nontrivial degree of privacy for free, without any sacrifice in the
performance of the estimator.
Related papers
- Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Personalized Differential Privacy for Ridge Regression [3.4751583941317166]
We introduce our novel Personalized-DP Output Perturbation method ( PDP-OP) that enables to train Ridge regression models with individual per data point privacy levels.
We provide rigorous privacy proofs for our PDP-OP as well as accuracy guarantees for the resulting model.
We show that PDP-OP outperforms the personalized privacy techniques of Jorgensen et al.
arXiv Detail & Related papers (2024-01-30T16:00:14Z) - Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free [13.198689566654103]
This work considers the problem of mean estimation under heterogeneous Differential Privacy constraints.
The algorithm we propose is shown to be minimax optimal when there are two groups of users with distinct privacy levels.
arXiv Detail & Related papers (2023-04-27T05:23:06Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
We consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis.
In this work, we study several basic data analysis and learning tasks, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person.
arXiv Detail & Related papers (2022-09-08T22:43:50Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Fully Adaptive Composition in Differential Privacy [53.01656650117495]
Well-known advanced composition theorems allow one to query a private database quadratically more times than basic privacy composition would permit.
We introduce fully adaptive composition, wherein both algorithms and their privacy parameters can be selected adaptively.
We construct filters that match the rates of advanced composition, including constants, despite allowing for adaptively chosen privacy parameters.
arXiv Detail & Related papers (2022-03-10T17:03:12Z) - Location Trace Privacy Under Conditional Priors [22.970796265042246]
We propose a R'enyi divergence based privacy framework for bounding expected privacy loss for conditionally dependent data.
We demonstrate an algorithm for achieving this privacy under conditional priors.
arXiv Detail & Related papers (2021-02-23T21:55:34Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z) - Individual Privacy Accounting via a Renyi Filter [33.65665839496798]
We give a method for tighter privacy loss accounting based on the value of a personalized privacy loss estimate for each individual.
Our filter is simpler and tighter than the known filter for $(epsilon,delta)$-differential privacy by Rogers et al.
arXiv Detail & Related papers (2020-08-25T17:49:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.