TempGNN: Temporal Graph Neural Networks for Dynamic Session-Based
Recommendations
- URL: http://arxiv.org/abs/2310.13249v1
- Date: Fri, 20 Oct 2023 03:13:10 GMT
- Title: TempGNN: Temporal Graph Neural Networks for Dynamic Session-Based
Recommendations
- Authors: Eunkyu Oh and Taehun Kim
- Abstract summary: Temporal Graph Neural Networks (TempGNN) is a generic framework for capturing the structural and temporal dynamics in complex item transitions.
TempGNN achieves state-of-the-art performance on two real-world e-commerce datasets.
- Score: 5.602191038593571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Session-based recommendations which predict the next action by understanding
a user's interaction behavior with items within a relatively short ongoing
session have recently gained increasing popularity. Previous research has
focused on capturing the dynamics of sequential dependencies from complicated
item transitions in a session by means of recurrent neural networks,
self-attention models, and recently, mostly graph neural networks. Despite the
plethora of different models relying on the order of items in a session, few
approaches have been proposed for dealing better with the temporal implications
between interactions. We present Temporal Graph Neural Networks (TempGNN), a
generic framework for capturing the structural and temporal dynamics in complex
item transitions utilizing temporal embedding operators on nodes and edges on
dynamic session graphs, represented as sequences of timed events. Extensive
experimental results show the effectiveness and adaptability of the proposed
method by plugging it into existing state-of-the-art models. Finally, TempGNN
achieved state-of-the-art performance on two real-world e-commerce datasets.
Related papers
- SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation [15.977789295203976]
We propose a novel framework called Self-Supervised Graph Neural Network (SelfGNN) for sequential recommendation.
The SelfGNN framework encodes short-term graphs based on time intervals and utilizes Graph Neural Networks (GNNs) to learn short-term collaborative relationships.
Our personalized self-augmented learning structure enhances model robustness by mitigating noise in short-term graphs based on long-term user interests and personal stability.
arXiv Detail & Related papers (2024-05-31T14:53:12Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs [16.121140184388786]
We propose MTD-GNN, a graph network for predicting temporally-dynamic edges for multiple types of relations.
We show that modeling multiple relations in our temporal-dynamic graph network can be mutually beneficial.
arXiv Detail & Related papers (2022-12-06T10:41:00Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - ConTIG: Continuous Representation Learning on Temporal Interaction
Graphs [32.25218861788686]
ConTIG is a continuous representation method that captures the continuous dynamic evolution of node embedding trajectories.
Our model exploit three-fold factors in dynamic networks which include latest interaction, neighbor features and inherent characteristics.
Experiments results demonstrate the superiority of ConTIG on temporal link prediction, temporal node recommendation and dynamic node classification tasks.
arXiv Detail & Related papers (2021-09-27T12:11:24Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
We devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe)
To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice.
To enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices.
arXiv Detail & Related papers (2021-09-24T07:44:27Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - TAGNN: Target Attentive Graph Neural Networks for Session-based
Recommendation [66.04457457299218]
We propose a novel target attentive graph neural network (TAGNN) model for session-based recommendation.
In TAGNN, target-aware attention adaptively activates different user interests with respect to varied target items.
The learned interest representation vector varies with different target items, greatly improving the expressiveness of the model.
arXiv Detail & Related papers (2020-05-06T14:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.