SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation
- URL: http://arxiv.org/abs/2405.20878v1
- Date: Fri, 31 May 2024 14:53:12 GMT
- Title: SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation
- Authors: Yuxi Liu, Lianghao Xia, Chao Huang,
- Abstract summary: We propose a novel framework called Self-Supervised Graph Neural Network (SelfGNN) for sequential recommendation.
The SelfGNN framework encodes short-term graphs based on time intervals and utilizes Graph Neural Networks (GNNs) to learn short-term collaborative relationships.
Our personalized self-augmented learning structure enhances model robustness by mitigating noise in short-term graphs based on long-term user interests and personal stability.
- Score: 15.977789295203976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation effectively addresses information overload by modeling users' temporal and sequential interaction patterns. To overcome the limitations of supervision signals, recent approaches have adopted self-supervised learning techniques in recommender systems. However, there are still two critical challenges that remain unsolved. Firstly, existing sequential models primarily focus on long-term modeling of individual interaction sequences, overlooking the valuable short-term collaborative relationships among the behaviors of different users. Secondly, real-world data often contain noise, particularly in users' short-term behaviors, which can arise from temporary intents or misclicks. Such noise negatively impacts the accuracy of both graph and sequence models, further complicating the modeling process. To address these challenges, we propose a novel framework called Self-Supervised Graph Neural Network (SelfGNN) for sequential recommendation. The SelfGNN framework encodes short-term graphs based on time intervals and utilizes Graph Neural Networks (GNNs) to learn short-term collaborative relationships. It captures long-term user and item representations at multiple granularity levels through interval fusion and dynamic behavior modeling. Importantly, our personalized self-augmented learning structure enhances model robustness by mitigating noise in short-term graphs based on long-term user interests and personal stability. Extensive experiments conducted on four real-world datasets demonstrate that SelfGNN outperforms various state-of-the-art baselines. Our model implementation codes are available at https://github.com/HKUDS/SelfGNN.
Related papers
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
In this paper, we propose self-attention GCN hybrid model, Multi-Scale Spatial-Temporal self-attention (MSST)-GCN.
We utilize spatial self-attention module with adaptive topology to understand intra-frame interactions within a frame among different body parts, and temporal self-attention module to examine correlations between frames of a node.
arXiv Detail & Related papers (2024-04-03T10:25:45Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
Composite Node Message Passing Network (CoNo-Link) is a framework for modeling ultra-long frames information for association.
In addition to the previous method of treating objects as nodes, the network innovatively treats object trajectories as nodes for information interaction.
Our model can learn better predictions on longer-time scales by adding composite nodes.
arXiv Detail & Related papers (2023-12-14T14:00:30Z) - TempGNN: Temporal Graph Neural Networks for Dynamic Session-Based
Recommendations [5.602191038593571]
Temporal Graph Neural Networks (TempGNN) is a generic framework for capturing the structural and temporal dynamics in complex item transitions.
TempGNN achieves state-of-the-art performance on two real-world e-commerce datasets.
arXiv Detail & Related papers (2023-10-20T03:13:10Z) - iLoRE: Dynamic Graph Representation with Instant Long-term Modeling and
Re-occurrence Preservation [21.15310868951046]
We present iLoRE, a novel dynamic graph modeling method with instant node-wise Long-term modeling and Re-occurrence preservation.
Our experimental results on real-world datasets demonstrate the effectiveness of our iLoRE for dynamic graph modeling.
arXiv Detail & Related papers (2023-09-05T07:48:52Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
We propose a novel DynSGG model based on multi-task learning, DynSGG-MTL, which introduces the local interaction information and global human-action interaction information.
Long-temporal human actions supervise the model to generate multiple scene graphs that conform to the global constraints and avoid the model being unable to learn the tail predicates.
arXiv Detail & Related papers (2023-08-10T01:24:25Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
We propose a novel temporal dynamic neural graph network (TodyNet) that can extract hidden-temporal dependencies without undefined graph structure.
The experiments on 26 UEA benchmark datasets illustrate that the proposed TodyNet outperforms existing deep learning-based methods in the MTSC tasks.
arXiv Detail & Related papers (2023-04-11T09:21:28Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
Long-term tensor-temporal forecasting (LSTF) makes use of long-term dependency between spatial and temporal domains, contextual information, and inherent pattern in the data.
We propose new graph models to represent the contextual information of each node and the long-term parking revealed-temporal data dependency structure.
Our proposed approaches significantly improve the performance of existing graph neural network models in LSTF prediction tasks.
arXiv Detail & Related papers (2022-04-23T06:51:37Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
Graph neural networks (GNNs) are widely used for modelling graph-structured data in numerous applications.
Motivated by this limitation, we propose a GNN model with infinite depth, which we call Efficient Infinite-Depth Graph Neural Networks (EIGNN)
We show that EIGNN has a better ability to capture long-range dependencies than recent baselines, and consistently achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-02-22T08:16:58Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Causal Incremental Graph Convolution for Recommender System Retraining [89.25922726558875]
Real-world recommender system needs to be regularly retrained to keep with the new data.
In this work, we consider how to efficiently retrain graph convolution network (GCN) based recommender models.
arXiv Detail & Related papers (2021-08-16T04:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.