Visual Grounding Helps Learn Word Meanings in Low-Data Regimes
- URL: http://arxiv.org/abs/2310.13257v2
- Date: Mon, 25 Mar 2024 18:48:40 GMT
- Title: Visual Grounding Helps Learn Word Meanings in Low-Data Regimes
- Authors: Chengxu Zhuang, Evelina Fedorenko, Jacob Andreas,
- Abstract summary: Modern neural language models (LMs) are powerful tools for modeling human sentence production and comprehension.
But to achieve these results, LMs must be trained in distinctly un-human-like ways.
Do models trained more naturalistically -- with grounded supervision -- exhibit more humanlike language learning?
We investigate this question in the context of word learning, a key sub-task in language acquisition.
- Score: 47.7950860342515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern neural language models (LMs) are powerful tools for modeling human sentence production and comprehension, and their internal representations are remarkably well-aligned with representations of language in the human brain. But to achieve these results, LMs must be trained in distinctly un-human-like ways - requiring orders of magnitude more language data than children receive during development, and without perceptual or social context. Do models trained more naturalistically -- with grounded supervision -- exhibit more humanlike language learning? We investigate this question in the context of word learning, a key sub-task in language acquisition. We train a diverse set of LM architectures, with and without auxiliary visual supervision, on datasets of varying scales. We then evaluate these models' learning of syntactic categories, lexical relations, semantic features, word similarity, and alignment with human neural representations. We find that visual supervision can indeed improve the efficiency of word learning. However, these improvements are limited: they are present almost exclusively in the low-data regime, and sometimes canceled out by the inclusion of rich distributional signals from text. The information conveyed by text and images is not redundant -- models mainly driven by visual information yield qualitatively different from those mainly driven by word co-occurrences. However, our results suggest that current multimodal modeling approaches fail to effectively leverage visual information to build human-like word representations from human-scale data.
Related papers
- Is Child-Directed Speech Effective Training Data for Language Models? [34.46268640655943]
We train GPT-2 and RoBERTa models on 29M words of English child-directed speech.
We test whether the global developmental ordering or the local discourse ordering of children's training data supports high performance relative to other datasets.
These findings support the hypothesis that, rather than proceeding from better data, the child's learning algorithm is substantially more data-efficient than current language modeling techniques.
arXiv Detail & Related papers (2024-08-07T08:18:51Z) - DevBench: A multimodal developmental benchmark for language learning [0.34129029452670606]
We introduce DevBench, a benchmark for evaluating vision-language models on tasks and behavioral data.
We show that DevBench provides a benchmark for comparing models to human language development.
These comparisons highlight ways in which model and human language learning processes diverge.
arXiv Detail & Related papers (2024-06-14T17:49:41Z) - Lexicon-Level Contrastive Visual-Grounding Improves Language Modeling [47.7950860342515]
LexiContrastive Grounding (LCG) is a grounded language learning procedure that leverages visual supervision to improve textual representations.
LCG outperforms standard language-only models in learning efficiency.
It improves upon vision-and-language learning procedures including CLIP, GIT, Flamingo, and Vokenization.
arXiv Detail & Related papers (2024-03-21T16:52:01Z) - Learning to Model the World with Language [100.76069091703505]
To interact with humans and act in the world, agents need to understand the range of language that people use and relate it to the visual world.
Our key idea is that agents should interpret such diverse language as a signal that helps them predict the future.
We instantiate this in Dynalang, an agent that learns a multimodal world model to predict future text and image representations.
arXiv Detail & Related papers (2023-07-31T17:57:49Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
We conduct a comparative analysis of the visual representations in existing vision-and-language models and vision-only models.
Our empirical observations suggest that vision-and-language models are better at label prediction tasks.
We hope our study sheds light on the role of language in visual learning, and serves as an empirical guide for various pretrained models.
arXiv Detail & Related papers (2022-12-01T05:00:18Z) - A Visuospatial Dataset for Naturalistic Verb Learning [18.654373173232205]
We introduce a new dataset for training and evaluating grounded language models.
Our data is collected within a virtual reality environment and is designed to emulate the quality of language data to which a pre-verbal child is likely to have access.
We use the collected data to compare several distributional semantics models for verb learning.
arXiv Detail & Related papers (2020-10-28T20:47:13Z) - Vokenization: Improving Language Understanding with Contextualized,
Visual-Grounded Supervision [110.66085917826648]
We develop a technique that extrapolates multimodal alignments to language-only data by contextually mapping language tokens to their related images.
"vokenization" is trained on relatively small image captioning datasets and we then apply it to generate vokens for large language corpora.
Trained with these contextually generated vokens, our visually-supervised language models show consistent improvements over self-supervised alternatives on multiple pure-language tasks.
arXiv Detail & Related papers (2020-10-14T02:11:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.