DevBench: A multimodal developmental benchmark for language learning
- URL: http://arxiv.org/abs/2406.10215v1
- Date: Fri, 14 Jun 2024 17:49:41 GMT
- Title: DevBench: A multimodal developmental benchmark for language learning
- Authors: Alvin Wei Ming Tan, Sunny Yu, Bria Long, Wanjing Anya Ma, Tonya Murray, Rebecca D. Silverman, Jason D. Yeatman, Michael C. Frank,
- Abstract summary: We introduce DevBench, a benchmark for evaluating vision-language models on tasks and behavioral data.
We show that DevBench provides a benchmark for comparing models to human language development.
These comparisons highlight ways in which model and human language learning processes diverge.
- Score: 0.34129029452670606
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: How (dis)similar are the learning trajectories of vision-language models and children? Recent modeling work has attempted to understand the gap between models' and humans' data efficiency by constructing models trained on less data, especially multimodal naturalistic data. However, such models are often evaluated on adult-level benchmarks, with limited breadth in language abilities tested, and without direct comparison to behavioral data. We introduce DevBench, a multimodal benchmark comprising seven language evaluation tasks spanning the domains of lexical, syntactic, and semantic ability, with behavioral data from both children and adults. We evaluate a set of vision-language models on these tasks, comparing models and humans not only on accuracy but on their response patterns. Across tasks, models exhibit variation in their closeness to human response patterns, and models that perform better on a task also more closely resemble human behavioral responses. We also examine the developmental trajectory of OpenCLIP over training, finding that greater training results in closer approximations to adult response patterns. DevBench thus provides a benchmark for comparing models to human language development. These comparisons highlight ways in which model and human language learning processes diverge, providing insight into entry points for improving language models.
Related papers
- Is Child-Directed Speech Effective Training Data for Language Models? [34.46268640655943]
We train GPT-2 and RoBERTa models on 29M words of English child-directed speech.
We test whether the global developmental ordering or the local discourse ordering of children's training data supports high performance relative to other datasets.
These findings support the hypothesis that, rather than proceeding from better data, the child's learning algorithm is substantially more data-efficient than current language modeling techniques.
arXiv Detail & Related papers (2024-08-07T08:18:51Z) - Can training neural language models on a curriculum with developmentally
plausible data improve alignment with human reading behavior? [0.2745342790938508]
This paper explores the extent to which the misalignment between empirical and model-predicted behavior can be minimized by training models on more developmentally plausible data.
We trained teacher language models on the BabyLM "strict-small" dataset and used sentence level surprisal estimates from these teacher models to create a curriculum.
We found tentative evidence that our curriculum made it easier for models to acquire linguistic knowledge from the training data.
arXiv Detail & Related papers (2023-11-30T18:03:58Z) - Evaluating Large Language Models on Controlled Generation Tasks [92.64781370921486]
We present an extensive analysis of various benchmarks including a sentence planning benchmark with different granularities.
After comparing large language models against state-of-the-start finetuned smaller models, we present a spectrum showing large language models falling behind, are comparable, or exceed the ability of smaller models.
arXiv Detail & Related papers (2023-10-23T03:48:24Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
Modern neural language models (LMs) are powerful tools for modeling human sentence production and comprehension.
But to achieve these results, LMs must be trained in distinctly un-human-like ways.
Do models trained more naturalistically -- with grounded supervision -- exhibit more humanlike language learning?
We investigate this question in the context of word learning, a key sub-task in language acquisition.
arXiv Detail & Related papers (2023-10-20T03:33:36Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
We propose a novel technique, Chain of Hindsight, that is easy to optimize and can learn from any form of feedback, regardless of its polarity.
We convert all types of feedback into sequences of sentences, which are then used to fine-tune the model.
By doing so, the model is trained to generate outputs based on feedback, while learning to identify and correct negative attributes or errors.
arXiv Detail & Related papers (2023-02-06T10:28:16Z) - Training Trajectories of Language Models Across Scales [99.38721327771208]
Scaling up language models has led to unprecedented performance gains.
How do language models of different sizes learn during pre-training?
Why do larger language models demonstrate more desirable behaviors?
arXiv Detail & Related papers (2022-12-19T19:16:29Z) - Scaling Language Models: Methods, Analysis & Insights from Training
Gopher [83.98181046650664]
We present an analysis of Transformer-based language model performance across a wide range of model scales.
Gains from scale are largest in areas such as reading comprehension, fact-checking, and the identification of toxic language.
We discuss the application of language models to AI safety and the mitigation of downstream harms.
arXiv Detail & Related papers (2021-12-08T19:41:47Z) - Word Acquisition in Neural Language Models [0.38073142980733]
We investigate how neural language models acquire individual words during training, extracting learning curves and ages of acquisition for over 600 words.
We find that the effects of concreteness, word length, and lexical class are pointedly different in children and language models.
arXiv Detail & Related papers (2021-10-05T23:26:16Z) - A Targeted Assessment of Incremental Processing in Neural LanguageModels
and Humans [2.7624021966289605]
We present a scaled-up comparison of incremental processing in humans and neural language models.
Data comes from a novel online experimental paradigm called the Interpolated Maze task.
We find that both humans and language models show increased processing difficulty in ungrammatical sentence regions.
arXiv Detail & Related papers (2021-06-06T20:04:39Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.