SALMONN: Towards Generic Hearing Abilities for Large Language Models
- URL: http://arxiv.org/abs/2310.13289v2
- Date: Mon, 8 Apr 2024 06:12:52 GMT
- Title: SALMONN: Towards Generic Hearing Abilities for Large Language Models
- Authors: Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, Chao Zhang,
- Abstract summary: We propose SALMONN, a speech audio language music open neural network.
It is built by integrating a pre-trained text-based large language model (LLM) with speech and audio encoders into a single multimodal model.
It is the first model of its type and can be regarded as a step towards AI with generic hearing abilities.
- Score: 24.73033723114979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hearing is arguably an essential ability of artificial intelligence (AI) agents in the physical world, which refers to the perception and understanding of general auditory information consisting of at least three types of sounds: speech, audio events, and music. In this paper, we propose SALMONN, a speech audio language music open neural network, built by integrating a pre-trained text-based large language model (LLM) with speech and audio encoders into a single multimodal model. SALMONN enables the LLM to directly process and understand general audio inputs and achieve competitive performances on a number of speech and audio tasks used in training, such as automatic speech recognition and translation, auditory-information-based question answering, emotion recognition, speaker verification, and music and audio captioning etc. SALMONN also has a diverse set of emergent abilities unseen in the training, which includes but is not limited to speech translation to untrained languages, speech-based slot filling, spoken-query-based question answering, audio-based storytelling, and speech audio co-reasoning etc. The presence of cross-modal emergent abilities is studied, and a novel few-shot activation tuning approach is proposed to activate such abilities. To our knowledge, SALMONN is the first model of its type and can be regarded as a step towards AI with generic hearing abilities. The source code, model checkpoints and data are available at https://github.com/bytedance/SALMONN.
Related papers
- FunAudioLLM: Voice Understanding and Generation Foundation Models for Natural Interaction Between Humans and LLMs [63.8261207950923]
FunAudioLLM is a model family designed to enhance natural voice interactions between humans and large language models (LLMs)
At its core are two innovative models: SenseVoice, which handles multilingual speech recognition, emotion recognition, and audio event detection; and CosyVoice, which facilitates natural speech generation with control over multiple languages, timbre, speaking style, and speaker identity.
The models related to SenseVoice and CosyVoice have been open-sourced on Modelscope and Huggingface, along with the corresponding training, inference, and fine-tuning codes released on GitHub.
arXiv Detail & Related papers (2024-07-04T16:49:02Z) - Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities [37.02115473120654]
Augmenting large language models (LLMs) to understand audio is critically important for diverse real-world applications.
In this paper, we propose Audio Flamingo, a novel audio language model with 1) strong audio understanding abilities, 2) the ability to quickly adapt to unseen tasks via in-context learning and retrieval, and 3) strong multi-turn dialogue abilities.
arXiv Detail & Related papers (2024-02-02T18:58:34Z) - AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining [46.22290575167155]
This paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation.
Our framework introduces a general representation of audio, called "language of audio" (LOA)
arXiv Detail & Related papers (2023-08-10T17:55:13Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - Spoken Question Answering and Speech Continuation Using Spectrogram-Powered LLM [19.36630667212398]
We present Spectron, a novel approach to adapting pre-trained large language models (LLMs) to perform spoken question answering (QA) and speech continuation.
Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis.
Our method surpasses existing spoken language models in speaker preservation and semantic coherence.
arXiv Detail & Related papers (2023-05-24T15:39:43Z) - AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking
Head [82.69233563811487]
Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition.
We propose a multi-modal AI system named AudioGPT, which complements LLMs with foundation models to process complex audio information.
arXiv Detail & Related papers (2023-04-25T17:05:38Z) - Language-Guided Audio-Visual Source Separation via Trimodal Consistency [64.0580750128049]
A key challenge in this task is learning to associate the linguistic description of a sound-emitting object to its visual features and the corresponding components of the audio waveform.
We adapt off-the-shelf vision-language foundation models to provide pseudo-target supervision via two novel loss functions.
We demonstrate the effectiveness of our self-supervised approach on three audio-visual separation datasets.
arXiv Detail & Related papers (2023-03-28T22:45:40Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual
Multi-Speaker Text-to-Speech [58.93395189153713]
We extend the pretraining method for cross-lingual multi-speaker speech synthesis tasks.
We propose a speech-text joint pretraining framework, where we randomly mask the spectrogram and the phonemes.
Our model shows great improvements over speaker-embedding-based multi-speaker TTS methods.
arXiv Detail & Related papers (2022-11-07T13:35:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.