AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking
Head
- URL: http://arxiv.org/abs/2304.12995v1
- Date: Tue, 25 Apr 2023 17:05:38 GMT
- Title: AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking
Head
- Authors: Rongjie Huang, Mingze Li, Dongchao Yang, Jiatong Shi, Xuankai Chang,
Zhenhui Ye, Yuning Wu, Zhiqing Hong, Jiawei Huang, Jinglin Liu, Yi Ren, Zhou
Zhao, Shinji Watanabe
- Abstract summary: Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition.
We propose a multi-modal AI system named AudioGPT, which complements LLMs with foundation models to process complex audio information.
- Score: 82.69233563811487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have exhibited remarkable capabilities across a
variety of domains and tasks, challenging our understanding of learning and
cognition. Despite the recent success, current LLMs are not capable of
processing complex audio information or conducting spoken conversations (like
Siri or Alexa). In this work, we propose a multi-modal AI system named
AudioGPT, which complements LLMs (i.e., ChatGPT) with 1) foundation models to
process complex audio information and solve numerous understanding and
generation tasks; and 2) the input/output interface (ASR, TTS) to support
spoken dialogue. With an increasing demand to evaluate multi-modal LLMs of
human intention understanding and cooperation with foundation models, we
outline the principles and processes and test AudioGPT in terms of consistency,
capability, and robustness. Experimental results demonstrate the capabilities
of AudioGPT in solving AI tasks with speech, music, sound, and talking head
understanding and generation in multi-round dialogues, which empower humans to
create rich and diverse audio content with unprecedented ease. Our system is
publicly available at \url{https://github.com/AIGC-Audio/AudioGPT}.
Related papers
- SALMONN-omni: A Codec-free LLM for Full-duplex Speech Understanding and Generation [17.56310064245171]
SALMON-omni is a speech understanding and generation model capable of simultaneously listening to its own generated speech sounds while speaking.
SALMON-omni excels at managing turn-taking, barge-in, and echo cancellation scenarios, establishing its potential as a robust prototype for full- conversational AI systems.
arXiv Detail & Related papers (2024-11-27T08:38:57Z) - Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition [72.22243595269389]
We introduce Audio-Agent, a framework for audio generation, editing and composition based on text or video inputs.
In our method, we utilize a pre-trained TTA diffusion network as the audio generation agent to work in tandem with GPT-4.
For video-to-audio (VTA) tasks, most existing methods require training a timestamp detector to synchronize video events with the generated audio.
arXiv Detail & Related papers (2024-10-04T11:40:53Z) - Beyond Single-Audio: Advancing Multi-Audio Processing in Audio Large Language Models [56.776580717999806]
Real-world applications often involve processing multiple audio streams simultaneously.
We propose the first multi-audio evaluation benchmark that consists of 20 datasets from 11 multi-audio tasks.
We propose a novel multi-audio-LLM (MALLM) to capture audio context among multiple similar audios.
arXiv Detail & Related papers (2024-09-27T12:06:53Z) - GAMA: A Large Audio-Language Model with Advanced Audio Understanding and Complex Reasoning Abilities [43.23351906406144]
General-purpose Large Audio-Language Model (LALM) with Advanced Audio Understanding and Complex Reasoning Abilities.
We build GAMA by integrating an LLM with multiple types of audio representations, including features from a custom Audio Q-Former.
We fine-tune GAMA on a large-scale audio-language dataset, which augments it with audio understanding capabilities.
arXiv Detail & Related papers (2024-06-17T17:31:01Z) - Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities [37.02115473120654]
Augmenting large language models (LLMs) to understand audio is critically important for diverse real-world applications.
In this paper, we propose Audio Flamingo, a novel audio language model with 1) strong audio understanding abilities, 2) the ability to quickly adapt to unseen tasks via in-context learning and retrieval, and 3) strong multi-turn dialogue abilities.
arXiv Detail & Related papers (2024-02-02T18:58:34Z) - Qwen-Audio: Advancing Universal Audio Understanding via Unified
Large-Scale Audio-Language Models [98.34889301515412]
We develop the Qwen-Audio model and address the limitation by scaling up audio-language pre-training to cover over 30 tasks and various audio types.
Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning.
We further develop Qwen-Audio-Chat, which allows for input from various audios and text inputs, enabling multi-turn dialogues and supporting various audio-central scenarios.
arXiv Detail & Related papers (2023-11-14T05:34:50Z) - AudioChatLlama: Towards General-Purpose Speech Abilities for LLMs [27.122094554340194]
We extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities.
The resulting end-to-end model, named AudioChatLlama, can utilize audio prompts as a replacement for text and sustain a conversation.
arXiv Detail & Related papers (2023-11-12T06:56:14Z) - SALMONN: Towards Generic Hearing Abilities for Large Language Models [24.73033723114979]
We propose SALMONN, a speech audio language music open neural network.
It is built by integrating a pre-trained text-based large language model (LLM) with speech and audio encoders into a single multimodal model.
It is the first model of its type and can be regarded as a step towards AI with generic hearing abilities.
arXiv Detail & Related papers (2023-10-20T05:41:57Z) - LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT [65.69648099999439]
Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks.
We propose LauraGPT, a novel unified audio-and-text GPT-based LLM for audio recognition, understanding, and generation.
arXiv Detail & Related papers (2023-10-07T03:17:59Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.