Dynamical quantum phase transitions following a noisy quench
- URL: http://arxiv.org/abs/2310.13337v2
- Date: Sun, 2 Jun 2024 20:06:00 GMT
- Title: Dynamical quantum phase transitions following a noisy quench
- Authors: R. Jafari, A. Langari, S. Eggert, Henrik Johannesson,
- Abstract summary: We study how time-dependent energy fluctuations impact the quantum phase transitions following a noisy quench of the transverse magnetic field in a quantum Ising chain.
We trace the phenomenon to the interplay between noise-induced excitations which accumulate during the quench and the nearadiabatic dynamics of the system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study how time-dependent energy fluctuations impact the dynamical quantum phase transitions (DQPTs) following a noisy ramped quench of the transverse magnetic field in a quantum Ising chain. By numerically solving the stochastic Schr\"odinger equation of the mode-decoupled fermionic Hamiltonian of the problem, we identify two generic scenarios: Depending on the amplitude of the noise and the rate of the ramp, the expected periodic sequence of noiseless DQPTs may either be uniformly shifted in time or else replaced by a disarray of closely spaced DQPTs. Guided by an exact noise master equation, we trace the phenomenon to the interplay between noise-induced excitations which accumulate during the quench and the near-adiabatic dynamics of the massive modes of the system. Our analysis generalizes to any 1D fermionic two-band model subject to a noisy quench.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Dynamical transitions from slow to fast relaxation in random open
quantum systems [0.0]
We study a model in which the system Hamiltonian and its couplings to the noise are random matrices whose entries decay as power laws of distance.
The steady state is always featureless, but the rate at which it is approached exhibits three phases depending on $alpha_H$ and $alpha_L$.
Within perturbation theory, the phase boundaries in the $(alpha_H, alpha_L)$ plane differ for weak and strong dissipation, suggesting phase transitions as a function of noise strength.
arXiv Detail & Related papers (2022-11-23T20:56:46Z) - Frequency combs with parity-protected cross-correlations from
dynamically modulated qubit arrays [117.44028458220427]
We develop a general theoretical framework to dynamically engineer quantum correlations in the frequency-comb emission from an array of superconducting qubits in a waveguide.
We demonstrate, that when the resonance of the two qubits are periodically modulated with a $pi$ phase shift, it is possible to realize simultaneous bunching and antibunching in cross-correlations of the scattered photons from different sidebands.
arXiv Detail & Related papers (2022-03-01T13:12:45Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Floquet dynamical quantum phase transitions under synchronized periodic
driving [0.0]
We study a generic class of fermionic two-band models under synchronized periodic driving.
The synchronized drive is found to produce nonperiodic patterns of dynamical quantum phase transitions.
A blueprint for an experiment built around laser-trapped circular Rydberg atoms is proposed.
arXiv Detail & Related papers (2021-11-18T19:42:46Z) - Simulability transitions in continuous-time dynamics of local open
quantum systems [0.913755431537592]
We prove that a time classical algorithm can be used to sample from the state of the spins when the rate of noise is higher than a threshold determined by the strength of the local interactions.
We show that for several noise channels, the problem of weakly simulating the output state of both purely Hamiltonian and purely dissipative dynamics is expected to be hard in the low-noise regime.
arXiv Detail & Related papers (2021-10-20T16:06:42Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Noise-Resilient Phase Transitions and Limit-Cycles in Coupled Kerr
Oscillators [0.0]
Driven-dissipative quantum many-body systems have been the subject of many studies in recent years.
We investigate the Green's function and correlation of the cavity modes in different regions.
Our results shed light on the emergence of dissipative phase transitions in open quantum systems.
arXiv Detail & Related papers (2021-06-08T01:46:01Z) - Dynamics of discrete-time quantum walk with time-correlated unitary
noise [0.0]
We investigate the dynamics of discrete-time quantum walk subject to time correlated noise.
Two remarker behaviors of long time noisy dynamics are observed in numerical simulations.
In fast noise regime, the walker is confined into few lattice sites, and the width of wave packet is much narrower compared with that in slow noise regime.
arXiv Detail & Related papers (2020-11-20T10:23:46Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.