Simulability transitions in continuous-time dynamics of local open
quantum systems
- URL: http://arxiv.org/abs/2110.10638v2
- Date: Wed, 9 Nov 2022 22:30:31 GMT
- Title: Simulability transitions in continuous-time dynamics of local open
quantum systems
- Authors: Rahul Trivedi, J. Ignacio Cirac
- Abstract summary: We prove that a time classical algorithm can be used to sample from the state of the spins when the rate of noise is higher than a threshold determined by the strength of the local interactions.
We show that for several noise channels, the problem of weakly simulating the output state of both purely Hamiltonian and purely dissipative dynamics is expected to be hard in the low-noise regime.
- Score: 0.913755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyze the complexity of classically simulating continuous-time dynamics
of locally interacting quantum spin systems with a constant rate of
entanglement breaking noise. We prove that a polynomial time classical
algorithm can be used to sample from the state of the spins when the rate of
noise is higher than a threshold determined by the strength of the local
interactions. Furthermore, by encoding a 1D fault tolerant quantum computation
into the dynamics of spin systems arranged on two or higher dimensional grids,
we show that for several noise channels, the problem of weakly simulating the
output state of both purely Hamiltonian and purely dissipative dynamics is
expected to be hard in the low-noise regime.
Related papers
- Effect of noise on quantum circuit realization of non-Hermitian time crystals [0.0]
We consider non-Hermitian dynamics on a noisy quantum computer.
We show that infinitely long-lived oscillations are generically lost for arbitrarily weak values of common types of noise.
Experiments on a real device (ibmq-lima) do not show remnants of these oscillations.
arXiv Detail & Related papers (2024-09-09T23:41:18Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Quantum error mitigation in the regime of high noise using deep neural
network: Trotterized dynamics [0.0]
We address a learning-based quantum error mitigation method, which utilizes deep neural network applied at the postprocessing stage.
We concentrate on the simulation of Trotterized dynamics of 2D spin lattice in the regime of high noise, when expectation values of bounded traceless observables are strongly suppressed.
arXiv Detail & Related papers (2023-10-20T09:53:05Z) - Dynamical quantum phase transitions following a noisy quench [0.0]
We study how time-dependent energy fluctuations impact the quantum phase transitions following a noisy quench of the transverse magnetic field in a quantum Ising chain.
We trace the phenomenon to the interplay between noise-induced excitations which accumulate during the quench and the nearadiabatic dynamics of the system.
arXiv Detail & Related papers (2023-10-20T07:56:47Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Experimental quantum simulation of non-Hermitian dynamical topological
states using stochastic Schr\"odinger equation [8.374675687855248]
Noise is ubiquitous in real quantum systems, leading to non-Hermitian quantum dynamics.
We show a feasible quantum simulation approach for dissipative quantum dynamics with Schr"odinger equation.
arXiv Detail & Related papers (2022-06-30T08:48:25Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.