Optimal Best Arm Identification with Fixed Confidence in Restless Bandits
- URL: http://arxiv.org/abs/2310.13393v2
- Date: Sun, 23 Jun 2024 06:58:14 GMT
- Title: Optimal Best Arm Identification with Fixed Confidence in Restless Bandits
- Authors: P. N. Karthik, Vincent Y. F. Tan, Arpan Mukherjee, Ali Tajer,
- Abstract summary: We study best arm identification in a restless multi-armed bandit setting with finitely many arms.
The discrete-time data generated by each arm forms a homogeneous Markov chain taking values in a common, finite state space.
It is demonstrated that tracking the long-term behavior of a certain Markov decision process and its state-action visitation proportions are the key ingredients in analyzing the converse and achievability bounds.
- Score: 66.700654953613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study best arm identification in a restless multi-armed bandit setting with finitely many arms. The discrete-time data generated by each arm forms a homogeneous Markov chain taking values in a common, finite state space. The state transitions in each arm are captured by an ergodic transition probability matrix (TPM) that is a member of a single-parameter exponential family of TPMs. The real-valued parameters of the arm TPMs are unknown and belong to a given space. Given a function $f$ defined on the common state space of the arms, the goal is to identify the best arm -- the arm with the largest average value of $f$ evaluated under the arm's stationary distribution -- with the fewest number of samples, subject to an upper bound on the decision's error probability (i.e., the fixed-confidence regime). A lower bound on the growth rate of the expected stopping time is established in the asymptote of a vanishing error probability. Furthermore, a policy for best arm identification is proposed, and its expected stopping time is proved to have an asymptotic growth rate that matches the lower bound. It is demonstrated that tracking the long-term behavior of a certain Markov decision process and its state-action visitation proportions are the key ingredients in analyzing the converse and achievability bounds. It is shown that under every policy, the state-action visitation proportions satisfy a specific approximate flow conservation constraint and that these proportions match the optimal proportions dictated by the lower bound under any asymptotically optimal policy. The prior studies on best arm identification in restless bandits focus on independent observations from the arms, rested Markov arms, and restless Markov arms with known arm TPMs. In contrast, this work is the first to study best arm identification in restless bandits with unknown arm TPMs.
Related papers
- A General Framework for Clustering and Distribution Matching with Bandit Feedback [81.50716021326194]
We develop a general framework for clustering and distribution matching problems with bandit feedback.
We derive a non-asymptotic lower bound on the average number of arm pulls for any online algorithm with an error probability not exceeding $delta$.
arXiv Detail & Related papers (2024-09-08T12:19:12Z) - Worst-Case Optimal Multi-Armed Gaussian Best Arm Identification with a
Fixed Budget [10.470114319701576]
This study investigates the experimental design problem for identifying the arm with the highest expected outcome.
Under the assumption that the variances are known, we propose the Generalized-Neyman-Allocation (GNA)-empirical-best-arm (EBA) strategy.
We show that the GNA-EBA strategy is infinitelyally optimal in sense that its probability of misidentification aligns with the lower bounds.
arXiv Detail & Related papers (2023-10-30T17:52:46Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
Multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a reward.
We consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a and possibly unknown policy.
We propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner.
arXiv Detail & Related papers (2023-08-29T18:18:21Z) - Covariance Adaptive Best Arm Identification [0.0]
The goal is to identify the arm with the highest mean reward with a probability of at least 1 -- $delta$, while minimizing the number of arm pulls.
We propose a more flexible scenario where arms can be dependent and rewards can be sampled simultaneously.
This framework is relevant in various applications, such as clinical trials, where similarities between patients or drugs suggest underlying correlations.
arXiv Detail & Related papers (2023-06-05T06:57:09Z) - Federated Best Arm Identification with Heterogeneous Clients [62.36929749450298]
We study best arm identification in a federated multi-armed bandit setting with a central server and multiple clients.
We show that for any algorithm whose upper bound on the expected stopping time matches with the lower bound up to a multiplicative constant (em almost-optimal algorithm)
We propose a novel algorithm that communicates at exponential time instants, and demonstrate that it is almost-optimal.
arXiv Detail & Related papers (2022-10-14T13:09:11Z) - Almost Cost-Free Communication in Federated Best Arm Identification [76.12303738941254]
We study the problem of best arm identification in a federated learning multi-armed bandit setup with a central server and multiple clients.
We propose a novel algorithm sc FedElim that is based on successive elimination and communicates only in exponential time steps.
arXiv Detail & Related papers (2022-08-19T08:37:09Z) - Best Arm Identification in Restless Markov Multi-Armed Bandits [85.55466536537293]
We study the problem of identifying the best arm in a multi-armed bandit environment.
A decision entity wishes to find the index of the best arm as quickly as possible, subject to an upper bound error probability.
We show that this policy achieves an upper bound that depends on $R$ and is monotonically non-increasing as $Rtoinfty$.
arXiv Detail & Related papers (2022-03-29T04:58:04Z) - Learning to Detect an Odd Restless Markov Arm with a Trembling Hand [12.467685221424032]
anomaly means that the transition probability matrix of one of the arms is different from the common TPM of each of the non-odd arms.
We devise a policy based on the principle of certainty equivalence, and demonstrate that under a continuous selection assumption and a certain regularity assumption on the TPMs, the policy achieves the lower bound arbitrarily closely.
Our achievability analysis is based on resolving the identifiability problem in the context of a certain countable-state controlled Markov process.
arXiv Detail & Related papers (2021-05-08T05:53:12Z) - Detecting an Odd Restless Markov Arm with a Trembling Hand [18.122816058828906]
We consider a multi-armed bandit in which each arm is a Markov process evolving on a finite state space.
The transition probability matrix of one of the arms (the odd arm) is different from the common transition probability matrix of all other arms.
A decision maker wishes to identify the odd arm as quickly as possible, while keeping the probability of decision error small.
arXiv Detail & Related papers (2020-05-13T11:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.