Optimal Multi-Objective Best Arm Identification with Fixed Confidence
- URL: http://arxiv.org/abs/2501.13607v1
- Date: Thu, 23 Jan 2025 12:28:09 GMT
- Title: Optimal Multi-Objective Best Arm Identification with Fixed Confidence
- Authors: Zhirui Chen, P. N. Karthik, Yeow Meng Chee, Vincent Y. F. Tan,
- Abstract summary: We consider a multi-armed bandit setting in which each arm yields an $M$-dimensional vector reward upon selection.
The end goal is to identify the best arm of em every objective in the shortest (expected) time subject to an upper bound on the probability of error.
We propose an algorithm that uses the novel idea of em surrogate proportions to sample the arms at each time step, eliminating the need to solve the max-min optimisation problem at each step.
- Score: 62.36929749450298
- License:
- Abstract: We consider a multi-armed bandit setting with finitely many arms, in which each arm yields an $M$-dimensional vector reward upon selection. We assume that the reward of each dimension (a.k.a. {\em objective}) is generated independently of the others. The best arm of any given objective is the arm with the largest component of mean corresponding to the objective. The end goal is to identify the best arm of {\em every} objective in the shortest (expected) time subject to an upper bound on the probability of error (i.e., fixed-confidence regime). We establish a problem-dependent lower bound on the limiting growth rate of the expected stopping time, in the limit of vanishing error probabilities. This lower bound, we show, is characterised by a max-min optimisation problem that is computationally expensive to solve at each time step. We propose an algorithm that uses the novel idea of {\em surrogate proportions} to sample the arms at each time step, eliminating the need to solve the max-min optimisation problem at each step. We demonstrate theoretically that our algorithm is asymptotically optimal. In addition, we provide extensive empirical studies to substantiate the efficiency of our algorithm. While existing works on pure exploration with multi-objective multi-armed bandits predominantly focus on {\em Pareto frontier identification}, our work fills the gap in the literature by conducting a formal investigation of the multi-objective best arm identification problem.
Related papers
- An Algorithm for Fixed Budget Best Arm Identification with Combinatorial Exploration [3.9901365062418312]
We consider the best arm identification problem in the $K-$armed bandit framework.
Agent is allowed to play a subset of arms at each time slot instead of one arm.
We propose an algorithm that constructs $log K$ groups and performs a likelihood ratio test to detect the presence of the best arm.
arXiv Detail & Related papers (2025-02-03T15:10:08Z) - Reward Maximization for Pure Exploration: Minimax Optimal Good Arm Identification for Nonparametric Multi-Armed Bandits [35.35226227009685]
Good arm identification (IGA) is a practical bandit inference objective that aims to label arms with means above a threshold as quickly as possible.
We show that GA can be efficiently solved by combining a reward-maximizing sampling algorithm with a novel non-valid sequential test for labeling arm means.
Our empirical results validate our approach beyond the minimax setting, reducing the expected number of samples for all stopping times by at least 50% across both synthetic and real-world settings.
arXiv Detail & Related papers (2024-10-21T01:19:23Z) - Optimal Multi-Fidelity Best-Arm Identification [65.23078799972188]
In bandit best-arm identification, an algorithm is tasked with finding the arm with highest mean reward with a specified accuracy as fast as possible.
We study multi-fidelity best-arm identification, in which the can choose to sample an arm at a lower fidelity (less accurate mean estimate) for a lower cost.
Several methods have been proposed for tackling this problem, but their optimality remain elusive, notably due to loose lower bounds on the total cost needed to identify the best arm.
arXiv Detail & Related papers (2024-06-05T08:02:40Z) - Pure Exploration for Constrained Best Mixed Arm Identification with a Fixed Budget [6.22018632187078]
We introduce the constrained best mixed arm identification (CBMAI) problem with a fixed budget.
The goal is to find the best mixed arm that maximizes the expected reward subject to constraints on the expected costs with a given learning budget $N$.
We provide a theoretical upper bound on the mis-identification (of the the support of the best mixed arm) probability and show that it decays exponentially in the budget $N$.
arXiv Detail & Related papers (2024-05-23T22:35:11Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Federated Best Arm Identification with Heterogeneous Clients [62.36929749450298]
We study best arm identification in a federated multi-armed bandit setting with a central server and multiple clients.
We show that for any algorithm whose upper bound on the expected stopping time matches with the lower bound up to a multiplicative constant (em almost-optimal algorithm)
We propose a novel algorithm that communicates at exponential time instants, and demonstrate that it is almost-optimal.
arXiv Detail & Related papers (2022-10-14T13:09:11Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
We devise a simple algorithm whose sampling complexity matches known instance-specific lower bounds.
Unlike existing best-arm identification strategies, our algorithm uses a stopping rule that does not depend on the number of arms.
arXiv Detail & Related papers (2020-06-29T14:25:51Z) - Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a
Differentially Private Scheme [16.1694012177079]
We study the best-arm identification problem in multi-armed bandits with, potentially private rewards.
The goal is to identify the arm with the highest quantile at a fixed, prescribed level.
We show that our algorithm is $delta$-PAC and we characterize its sample complexity.
arXiv Detail & Related papers (2020-06-11T20:23:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.