GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?
- URL: http://arxiv.org/abs/2310.13833v2
- Date: Sat, 27 Jan 2024 22:10:39 GMT
- Title: GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?
- Authors: Mufei Li, Eleonora Krea\v{c}i\'c, Vamsi K. Potluru, Pan Li
- Abstract summary: Large-scale graphs with node attributes are increasingly common in various real-world applications.
Traditional graph generation methods are limited in their capacity to handle these complex structures.
This paper introduces a novel diffusion model, GraphMaker, specifically designed for generating large attributed graphs.
- Score: 8.008021732866055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale graphs with node attributes are increasingly common in various
real-world applications. Creating synthetic, attribute-rich graphs that mirror
real-world examples is crucial, especially for sharing graph data for analysis
and developing learning models when original data is restricted to be shared.
Traditional graph generation methods are limited in their capacity to handle
these complex structures. Recent advances in diffusion models have shown
potential in generating graph structures without attributes and smaller
molecular graphs. However, these models face challenges in generating large
attributed graphs due to the complex attribute-structure correlations and the
large size of these graphs. This paper introduces a novel diffusion model,
GraphMaker, specifically designed for generating large attributed graphs. We
explore various combinations of node attribute and graph structure generation
processes, finding that an asynchronous approach more effectively captures the
intricate attribute-structure correlations. We also address scalability issues
through edge mini-batching generation. To demonstrate the practicality of our
approach in graph data dissemination, we introduce a new evaluation pipeline.
The evaluation demonstrates that synthetic graphs generated by GraphMaker can
be used to develop competitive graph machine learning models for the tasks
defined over the original graphs without actually accessing these graphs, while
many leading graph generation methods fall short in this evaluation.
Related papers
- Data Augmentation in Graph Neural Networks: The Role of Generated Synthetic Graphs [0.24999074238880487]
This study explores using generated graphs for data augmentation.
It compares the performance of combining generated graphs with real graphs, and examining the effect of different quantities of generated graphs on graph classification tasks.
Our results introduce a new approach to graph data augmentation, ensuring consistent labels and enhancing classification performance.
arXiv Detail & Related papers (2024-07-20T06:05:26Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
We propose a novel self-conditioned graph generation framework designed to explicitly model graph distributions.
Our framework demonstrates superior performance over existing state-of-the-art graph generation methods in terms of graph quality and fidelity to training data.
arXiv Detail & Related papers (2024-03-02T02:28:20Z) - An Accurate Graph Generative Model with Tunable Features [0.8192907805418583]
We propose a method to improve the accuracy of GraphTune by adding a new mechanism to feed back errors of graph features.
Experiments on a real-world graph dataset showed that the features in the generated graphs are accurately tuned compared with conventional models.
arXiv Detail & Related papers (2023-09-03T12:34:15Z) - HiGen: Hierarchical Graph Generative Networks [2.3931689873603603]
Most real-world graphs exhibit a hierarchical structure, which is often overlooked by existing graph generation methods.
We propose a novel graph generative network that captures the hierarchical nature of graphs and successively generates the graph sub-structures in a coarse-to-fine fashion.
This modular approach enables scalable graph generation for large and complex graphs.
arXiv Detail & Related papers (2023-05-30T18:04:12Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
We describe SynGraphy, a method for visually summarising the structure of large network datasets.
It works by drawing smaller graphs generated to have similar structural properties to the input graphs.
arXiv Detail & Related papers (2023-02-15T16:00:15Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Generating a Doppelganger Graph: Resembling but Distinct [5.618335078130568]
We propose an approach to generating a doppelganger graph that resembles a given one in many graph properties.
The approach is an orchestration of graph representation learning, generative adversarial networks, and graph realization algorithms.
arXiv Detail & Related papers (2021-01-23T22:08:27Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.