Fast Approximation of Similarity Graphs with Kernel Density Estimation
- URL: http://arxiv.org/abs/2310.13870v1
- Date: Sat, 21 Oct 2023 00:32:47 GMT
- Title: Fast Approximation of Similarity Graphs with Kernel Density Estimation
- Authors: Peter Macgregor and He Sun
- Abstract summary: We present a new algorithm for constructing a similarity graph from a set $X$ of data points in $mathbbRd$.
Our presented algorithm is based on the kernel density estimation problem, and is applicable for arbitrary kernel functions.
- Score: 12.321755440062732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constructing a similarity graph from a set $X$ of data points in
$\mathbb{R}^d$ is the first step of many modern clustering algorithms. However,
typical constructions of a similarity graph have high time complexity, and a
quadratic space dependency with respect to $|X|$. We address this limitation
and present a new algorithmic framework that constructs a sparse approximation
of the fully connected similarity graph while preserving its cluster structure.
Our presented algorithm is based on the kernel density estimation problem, and
is applicable for arbitrary kernel functions. We compare our designed algorithm
with the well-known implementations from the scikit-learn library and the FAISS
library, and find that our method significantly outperforms the implementation
from both libraries on a variety of datasets.
Related papers
- A Differentially Private Clustering Algorithm for Well-Clustered Graphs [6.523602840064548]
We provide an efficient ($epsilon,$delta$)-DP algorithm tailored specifically for such graphs.
Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters.
arXiv Detail & Related papers (2024-03-21T11:57:16Z) - Nearly-Optimal Hierarchical Clustering for Well-Clustered Graphs [7.616556723260849]
This paper presents two efficient hierarchical clustering (HC) algorithms with respect to Dasgupta's cost function.
For any input graph $G$ with a clear cluster-structure, our designed algorithms run in nearly-linear time in the input size of $G$.
We show that our designed algorithm produces comparable or better HC trees with much lower running time.
arXiv Detail & Related papers (2023-06-16T16:31:46Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - ParlayANN: Scalable and Deterministic Parallel Graph-Based Approximate
Nearest Neighbor Search Algorithms [5.478671305092084]
We introduce ParlayANN, a library of deterministic and parallel graph-based approximate nearest neighbor search algorithms.
We develop novel parallel implementations for four state-of-the-art graph-based ANNS algorithms that scale to billion-scale datasets.
arXiv Detail & Related papers (2023-05-07T19:28:23Z) - Efficient Graph Field Integrators Meet Point Clouds [59.27295475120132]
We present two new classes of algorithms for efficient field integration on graphs encoding point clouds.
The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds.
arXiv Detail & Related papers (2023-02-02T08:33:36Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Hierarchical Clustering: $O(1)$-Approximation for Well-Clustered Graphs [3.2901541059183432]
We present two-time approximation algorithms for hierarchical clustering.
The significance of our work is demonstrated by the empirical analysis on both synthetic and real-world data sets.
arXiv Detail & Related papers (2021-12-16T17:52:04Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z) - Data Structures & Algorithms for Exact Inference in Hierarchical
Clustering [41.24805506595378]
We present novel dynamic-programming algorithms for emphexact inference in hierarchical clustering based on a novel trellis data structure.
Our algorithms scale in time and space proportional to the powerset of $N$ elements which is super-exponentially more efficient than explicitly considering each of the (2N-3)!! possible hierarchies.
arXiv Detail & Related papers (2020-02-26T17:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.