Learning Motion Refinement for Unsupervised Face Animation
- URL: http://arxiv.org/abs/2310.13912v1
- Date: Sat, 21 Oct 2023 05:52:25 GMT
- Title: Learning Motion Refinement for Unsupervised Face Animation
- Authors: Jiale Tao, Shuhang Gu, Wen Li, Lixin Duan
- Abstract summary: Unsupervised face animation aims to generate a human face video based on the appearance of a source image, mimicking the motion from a driving video.
Existing methods typically adopted a prior-based motion model (e.g., the local affine motion model or the local thin-plate-spline motion model)
In this work, we design a new unsupervised face animation approach to learn simultaneously the coarse and finer motions.
- Score: 45.807582064277305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised face animation aims to generate a human face video based on the
appearance of a source image, mimicking the motion from a driving video.
Existing methods typically adopted a prior-based motion model (e.g., the local
affine motion model or the local thin-plate-spline motion model). While it is
able to capture the coarse facial motion, artifacts can often be observed
around the tiny motion in local areas (e.g., lips and eyes), due to the limited
ability of these methods to model the finer facial motions. In this work, we
design a new unsupervised face animation approach to learn simultaneously the
coarse and finer motions. In particular, while exploiting the local affine
motion model to learn the global coarse facial motion, we design a novel motion
refinement module to compensate for the local affine motion model for modeling
finer face motions in local areas. The motion refinement is learned from the
dense correlation between the source and driving images. Specifically, we first
construct a structure correlation volume based on the keypoint features of the
source and driving images. Then, we train a model to generate the tiny facial
motions iteratively from low to high resolution. The learned motion refinements
are combined with the coarse motion to generate the new image. Extensive
experiments on widely used benchmarks demonstrate that our method achieves the
best results among state-of-the-art baselines.
Related papers
- Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics [67.97235923372035]
We present Puppet-Master, an interactive video generative model that can serve as a motion prior for part-level dynamics.
At test time, given a single image and a sparse set of motion trajectories, Puppet-Master can synthesize a video depicting realistic part-level motion faithful to the given drag interactions.
arXiv Detail & Related papers (2024-08-08T17:59:38Z) - Monkey See, Monkey Do: Harnessing Self-attention in Motion Diffusion for Zero-shot Motion Transfer [55.109778609058154]
Existing diffusion-based motion editing methods overlook the profound potential of the prior embedded within the weights of pre-trained models.
We uncover the roles and interactions of attention elements in capturing and representing motion patterns.
We integrate these elements to transfer a leader motion to a follower one while maintaining the nuanced characteristics of the follower, resulting in zero-shot motion transfer.
arXiv Detail & Related papers (2024-06-10T17:47:14Z) - Controllable Longer Image Animation with Diffusion Models [12.565739255499594]
We introduce an open-domain controllable image animation method using motion priors with video diffusion models.
Our method achieves precise control over the direction and speed of motion in the movable region by extracting the motion field information from videos.
We propose an efficient long-duration video generation method based on noise reschedule specifically tailored for image animation tasks.
arXiv Detail & Related papers (2024-05-27T16:08:00Z) - SurMo: Surface-based 4D Motion Modeling for Dynamic Human Rendering [45.51684124904457]
We propose a new 4D motion paradigm, SurMo, that models the temporal dynamics and human appearances in a unified framework.
Surface-based motion encoding that models 4D human motions with an efficient compact surface-based triplane.
Physical motion decoding that is designed to encourage physical motion learning.
4D appearance modeling that renders the motion triplanes into images by an efficient surface-conditioned decoding.
arXiv Detail & Related papers (2024-04-01T16:34:27Z) - X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention [18.211762995744337]
We propose X-Portrait, an innovative conditional diffusion model tailored for generating expressive and temporally coherent portrait animation.
Given a single portrait as appearance reference, we aim to animate it with motion derived from a driving video, capturing both highly dynamic and subtle facial expressions.
Experimental results demonstrate the universal effectiveness of X-Portrait across a diverse range of facial portraits and expressive driving sequences.
arXiv Detail & Related papers (2024-03-23T20:30:28Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - Sparse to Dense Motion Transfer for Face Image Animation [34.16015389505612]
Given a source face image and a sequence of sparse face landmarks, our goal is to generate a video of the face imitating the motion of landmarks.
We develop an efficient and effective method for motion transfer from sparse landmarks to the face image.
arXiv Detail & Related papers (2021-09-01T16:23:57Z) - Real-time Deep Dynamic Characters [95.5592405831368]
We propose a deep videorealistic 3D human character model displaying highly realistic shape, motion, and dynamic appearance.
We use a novel graph convolutional network architecture to enable motion-dependent deformation learning of body and clothing.
We show that our model creates motion-dependent surface deformations, physically plausible dynamic clothing deformations, as well as video-realistic surface textures at a much higher level of detail than previous state of the art approaches.
arXiv Detail & Related papers (2021-05-04T23:28:55Z) - Self-supervised Motion Learning from Static Images [36.85209332144106]
Motion from Static Images (MoSI) learns to encode motion information.
MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
We demonstrate that MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
arXiv Detail & Related papers (2021-04-01T03:55:50Z) - First Order Motion Model for Image Animation [90.712718329677]
Image animation consists of generating a video sequence so that an object in a source image is animated according to the motion of a driving video.
Our framework addresses this problem without using any annotation or prior information about the specific object to animate.
arXiv Detail & Related papers (2020-02-29T07:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.