Robotic Arm Manipulation to Perform Rock Skipping in Simulation
- URL: http://arxiv.org/abs/2310.14492v1
- Date: Mon, 23 Oct 2023 01:55:43 GMT
- Title: Robotic Arm Manipulation to Perform Rock Skipping in Simulation
- Authors: Nicholas Ramirez and Michael Burgess
- Abstract summary: This project aims to bring rock skipping into a robotic setting, utilizing the lessons we learned in Robotic Manipulation.
Specifically, this project implements a system consisting of a robotic arm and dynamic environment to perform rock skipping in simulation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Rock skipping is a highly dynamic and relatively complex task that can easily
be performed by humans. This project aims to bring rock skipping into a robotic
setting, utilizing the lessons we learned in Robotic Manipulation.
Specifically, this project implements a system consisting of a robotic arm and
dynamic environment to perform rock skipping in simulation. By varying
important parameters such as release velocity, we hope to use our system to
gain insight into the most important factors for maximizing the total number of
skips. In addition, by implementing the system in simulation, we have a more
rigorous and precise testing approach over these varied test parameters.
However, this project experienced some limitations due to gripping
inefficiencies and problems with release height trajectories which is further
discussed in our report.
Related papers
- Learning to enhance multi-legged robot on rugged landscapes [7.956679144631909]
Multi-legged robots offer a promising solution forNavigating rugged landscapes.
Recent studies have shown that a linear controller can ensure reliable mobility on challenging terrains.
We develop a MuJoCo-based simulator tailored to this robotic platform and use the simulation to develop a reinforcement learning-based control framework.
arXiv Detail & Related papers (2024-09-14T15:53:08Z) - Bridging the gap between Learning-to-plan, Motion Primitives and Safe Reinforcement Learning [20.158498233576143]
Trajectory planning under kinodynamic constraints is fundamental for advanced robotics applications.
Recent advances in kinodynamic planning demonstrate that learning-to-plan techniques can generate complex motions under intricate constraints.
This paper addresses this limitation by combining learning-to-plan methods with reinforcement learning, resulting in a novel integration of black-box learning of motion primitives and optimization.
arXiv Detail & Related papers (2024-08-26T07:44:53Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model [11.800678688260081]
We develop a novel probabilistic, terrain- and robot-aware forward dynamics model, termed TRADYN.
We evaluate our method in a simulated 2D navigation setting with a unicycle-like robot and different terrain layouts with spatially varying friction coefficients.
arXiv Detail & Related papers (2023-07-18T12:42:59Z) - Obstacle Avoidance for Robotic Manipulator in Joint Space via Improved
Proximal Policy Optimization [6.067589886362815]
In this paper, we train a deep neural network via an improved Proximal Policy Optimization (PPO) algorithm to map from task space to joint space for a 6-DoF manipulator.
Since training such a task in real-robot is time-consuming and strenuous, we develop a simulation environment to train the model.
Experimental results showed that using our method, the robot was capable of tracking a single target or reaching multiple targets in unstructured environments.
arXiv Detail & Related papers (2022-10-03T10:21:57Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
Inverted landing in a rapid and robust manner is a challenging feat for aerial robots, especially while depending entirely on onboard sensing and computation.
Previous work has identified a direct causal connection between a series of onboard visual cues and kinematic actions that allow for reliable execution of this challenging aerobatic maneuver in small aerial robots.
In this work, we first utilized Deep Reinforcement Learning and a physics-based simulation to obtain a general, optimal control policy for robust inverted landing.
arXiv Detail & Related papers (2022-09-22T14:38:10Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.