Context-Aware Prediction of User Engagement on Online Social Platforms
- URL: http://arxiv.org/abs/2310.14533v2
- Date: Fri, 14 Jun 2024 16:21:51 GMT
- Title: Context-Aware Prediction of User Engagement on Online Social Platforms
- Authors: Heinrich Peters, Yozen Liu, Francesco Barbieri, Raiyan Abdul Baten, Sandra C. Matz, Maarten W. Bos,
- Abstract summary: We present data suggesting that context-aware modeling approaches may offer a holistic yet lightweight representation of user engagement on online social platforms.
We analyze more than 100 million Snapchat sessions from almost 80.000 users.
Features related to smartphone connectivity status, location, temporal context, and weather were found to capture non-redundant variance in user engagement.
- Score: 15.847199578750924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of online social platforms hinges on their ability to predict and understand user behavior at scale. Here, we present data suggesting that context-aware modeling approaches may offer a holistic yet lightweight and potentially privacy-preserving representation of user engagement on online social platforms. Leveraging deep LSTM neural networks to analyze more than 100 million Snapchat sessions from almost 80.000 users, we demonstrate that patterns of active and passive use are predictable from past behavior (R2=0.345) and that the integration of context features substantially improves predictive performance compared to the behavioral baseline model (R2=0.522). Features related to smartphone connectivity status, location, temporal context, and weather were found to capture non-redundant variance in user engagement relative to features derived from histories of in-app behaviors. Further, we show that a large proportion of variance can be accounted for with minimal behavioral histories if momentary context is considered (R2=0.442). These results indicate the potential of context-aware approaches for making models more efficient and privacy-preserving by reducing the need for long data histories. Finally, we employ model explainability techniques to glean preliminary insights into the underlying behavioral mechanisms. Our findings are consistent with the notion of context-contingent, habit-driven patterns of active and passive use, underscoring the value of contextualized representations of user behavior for predicting user engagement on social platforms.
Related papers
- Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Incorporating Heterogeneous User Behaviors and Social Influences for
Predictive Analysis [32.31161268928372]
We aim to incorporate heterogeneous user behaviors and social influences for behavior predictions.
This paper proposes a variant of Long-Short Term Memory (LSTM) which can consider context while a behavior sequence.
A residual learning-based decoder is designed to automatically construct multiple high-order cross features based on social behavior representation.
arXiv Detail & Related papers (2022-07-24T17:05:37Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
We propose a novel attention network, named self-modulating attention, that models the complex and non-linearly evolving dynamic user preferences.
We empirically demonstrate the effectiveness of our method on top-N sequential recommendation tasks, and the results on three large-scale real-world datasets show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-30T03:54:11Z) - Comparison of Spatio-Temporal Models for Human Motion and Pose
Forecasting in Face-to-Face Interaction Scenarios [47.99589136455976]
We present the first systematic comparison of state-of-the-art approaches for behavior forecasting.
Our best attention-based approaches achieve state-of-the-art performance in UDIVA v0.5.
We show that by autoregressively predicting the future with methods trained for the short-term future, we outperform the baselines even for a considerably longer-term future.
arXiv Detail & Related papers (2022-03-07T09:59:30Z) - Social Processes: Self-Supervised Forecasting of Nonverbal Cues in
Social Conversations [22.302509912465077]
We take the first step in the direction of a bottom-up self-supervised approach in the domain of social human interactions.
We formulate the task of Social Cue Forecasting to leverage the larger amount of unlabeled low-level behavior cues.
We propose the Social Process (SP) models--socially aware sequence-to-sequence (Seq2Seq) models within the Neural Process (NP) family.
arXiv Detail & Related papers (2021-07-28T18:01:08Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Knowing your FATE: Friendship, Action and Temporal Explanations for User
Engagement Prediction on Social Apps [40.58156024231199]
We study a novel problem of explainable user engagement prediction for social network Apps.
We design an end-to-end neural framework, FATE, which incorporates three key factors that we identify to influence user engagement.
FATE is based on a tensor-based graph neural network (GNN), LSTM and a mixture attention mechanism, which allows for (a) predictive explanations based on learned weights across different feature categories, (b) reduced network complexity, and (c) improved performance in both prediction accuracy and training/inference time.
arXiv Detail & Related papers (2020-06-10T02:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.