論文の概要: Conversational Recommender System and Large Language Model Are Made for Each Other in E-commerce Pre-sales Dialogue
- arxiv url: http://arxiv.org/abs/2310.14626v2
- Date: Fri, 18 Oct 2024 08:56:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:22:21.901449
- Title: Conversational Recommender System and Large Language Model Are Made for Each Other in E-commerce Pre-sales Dialogue
- Title(参考訳): 電子商取引事前販売対話における対話型レコメンダシステムと大規模言語モデル
- Authors: Yuanxing Liu, Wei-Nan Zhang, Yifan Chen, Yuchi Zhang, Haopeng Bai, Fan Feng, Hengbin Cui, Yongbin Li, Wanxiang Che,
- Abstract要約: 会話推薦システム(CRS)は、ユーザ表現を学習し、対話コンテキストに基づいて正確なレコメンデーションを提供するが、外部知識に依存している。
大規模言語モデル(LLM)は、微調整後の事前販売の対話を模倣する応答を生成するが、正確なレコメンデーションのためのドメイン固有の知識は欠如している。
本稿では,eコマース事前販売対話におけるLCMとCRSの組み合わせの有効性について検討する。
- 参考スコア(独自算出の注目度): 80.51690477289418
- License:
- Abstract: E-commerce pre-sales dialogue aims to understand and elicit user needs and preferences for the items they are seeking so as to provide appropriate recommendations. Conversational recommender systems (CRSs) learn user representation and provide accurate recommendations based on dialogue context, but rely on external knowledge. Large language models (LLMs) generate responses that mimic pre-sales dialogues after fine-tuning, but lack domain-specific knowledge for accurate recommendations. Intuitively, the strengths of LLM and CRS in E-commerce pre-sales dialogues are complementary, yet no previous work has explored this. This paper investigates the effectiveness of combining LLM and CRS in E-commerce pre-sales dialogues, proposing two collaboration methods: CRS assisting LLM and LLM assisting CRS. We conduct extensive experiments on a real-world dataset of Ecommerce pre-sales dialogues. We analyze the impact of two collaborative approaches with two CRSs and two LLMs on four tasks of Ecommerce pre-sales dialogue. We find that collaborations between CRS and LLM can be very effective in some cases.
- Abstract(参考訳): Eコマース・プレセールス・ダイアログは、ユーザーが求めている商品のユーザーニーズや好みを理解して、適切なレコメンデーションを提供することを目的としている。
会話推薦システム(CRS)は、ユーザ表現を学習し、対話コンテキストに基づいて正確なレコメンデーションを提供するが、外部知識に依存している。
大規模言語モデル(LLM)は、微調整後の事前販売の対話を模倣する応答を生成するが、正確なレコメンデーションのためのドメイン固有の知識は欠如している。
直感的には、eコマース事前販売の対話におけるLCMとCRSの強みは相補的であるが、それについてはこれまでの研究は行われていない。
本稿では,LCMとCRSを併用した電子商取引事前販売対話の有効性について検討し,CRSとCRSの2つの協調手法を提案する。
我々は、Eコマース事前販売の対話の現実的なデータセットについて広範な実験を行う。
2つのCRSと2つのLCMとの協調的アプローチがEコマース事前販売対話の4つのタスクに与える影響を解析した。
CRS と LLM の協調作業は,いくつかのケースで非常に効果的であることが判明した。
関連論文リスト
- Large Language Model Driven Recommendation [34.45328907249946]
言語主導のレコメンデーションの出現は、リコメンデーションのための自然言語(NL)インタラクションの使用を解放した。
この章では、LLMの一般NL能力が、高度にパーソナライズされたRSを構築する新しい機会を導く方法について論じる。
論文 参考訳(メタデータ) (2024-08-20T15:36:24Z) - Injecting Salesperson's Dialogue Strategies in Large Language Models with Chain-of-Thought Reasoning [23.919423630938226]
SalesBotは、Chit-chatからタスク指向のシナリオへ移行し、セールスエージェントをトレーニングする対話をシミュレートする。
最初のデータはスムーズなトランジションとコヒーレントなロングターンダイアログを欠いていたため、セールス・カストマー相互作用の自然性が低かった。
営業担当者のインタラクションを学習し,チェーン・オブ・ソート(CoT)推論を用いた新しいモデル「SalesAgent」を紹介した。
論文 参考訳(メタデータ) (2024-04-29T10:12:04Z) - A Multi-Agent Conversational Recommender System [47.49330334611104]
マルチエージェント対話型レコメンダシステム(MACRS)を提案する。
まず,4つのLCMエージェントをベースとした対話フローを制御可能なマルチエージェント行動計画フレームワークを設計する。
第2に,ユーザのフィードバックを生かしたユーザフィードバック対応のリフレクション機構を提案し,従来からある誤りを推論し,対話行動計画の調整を行う。
論文 参考訳(メタデータ) (2024-02-02T04:20:13Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
会話レコメンデータシステム(CRS)は,自然言語会話を通じてユーザの嗜好を喚起することで,ユーザに対して関連項目を推薦することを目的としている。
先行作業では、アイテムのセマンティック情報、対話生成のための言語モデル、関連する項目のランク付けのためのレコメンデーションモジュールとして、外部知識グラフを利用することが多い。
本稿では、自然言語の項目を表現し、CRSを自然言語処理タスクとして定式化する。
論文 参考訳(メタデータ) (2024-01-25T14:07:34Z) - U-NEED: A Fine-grained Dataset for User Needs-Centric E-commerce
Conversational Recommendation [59.81301478480005]
現実のEコマースシナリオからユーザニーズ中心のEコマース対話推薦データセット(U-NEED)を構築した。
U-NEEDは,5つのカテゴリ (ii) 333,879のユーザ行動と, (iii) 332,148の製品知識の3種類のリソースで構成されている。
論文 参考訳(メタデータ) (2023-05-05T01:44:35Z) - Towards Unified Conversational Recommender Systems via
Knowledge-Enhanced Prompt Learning [89.64215566478931]
会話レコメンデータシステム(CRS)は,ユーザの嗜好を積極的に取り入れ,自然言語会話を通じて高品質な項目を推薦することを目的としている。
効果的なCRSを開発するためには、2つのモジュールをシームレスに統合することが不可欠である。
知識強調学習に基づく統一CRSモデルUniCRSを提案する。
論文 参考訳(メタデータ) (2022-06-19T09:21:27Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
対話型レコメンデータシステム(CRS)は,対話型対話を通じて高品質なアイテムをユーザに推薦することを目的としている。
まず、会話データ自体にユーザの好みを正確に理解するための十分なコンテキスト情報がない。
第二に、自然言語表現とアイテムレベルのユーザ嗜好の間には意味的なギャップがある。
論文 参考訳(メタデータ) (2020-07-08T11:14:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。