Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval
- URL: http://arxiv.org/abs/2310.14637v2
- Date: Thu, 03 Oct 2024 03:51:22 GMT
- Title: Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval
- Authors: Xu Yuan, Zheng Zhang, Xunguang Wang, Lin Wu,
- Abstract summary: Adversarial examples pose a security threat to deep hashing models.
Adversarial examples fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features.
For the first time, we formulate the formalized adversarial training of deep hashing into a unified minimax structure.
- Score: 26.17466361744519
- License:
- Abstract: Deep hashing has been intensively studied and successfully applied in large-scale image retrieval systems due to its efficiency and effectiveness. Recent studies have recognized that the existence of adversarial examples poses a security threat to deep hashing models, that is, adversarial vulnerability. Notably, it is challenging to efficiently distill reliable semantic representatives for deep hashing to guide adversarial learning, and thereby it hinders the enhancement of adversarial robustness of deep hashing-based retrieval models. Moreover, current researches on adversarial training for deep hashing are hard to be formalized into a unified minimax structure. In this paper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the adversarial robustness of deep hashing models. Specifically, we conceive a discriminative mainstay features learning (DMFL) scheme to construct semantic representatives for guiding adversarial learning in deep hashing. Particularly, our DMFL with the strict theoretical guarantee is adaptively optimized in a discriminative learning manner, where both discriminative and semantic properties are jointly considered. Moreover, adversarial examples are fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features, the efficacy of which is validated in the adversarial attack trials. Further, we, for the first time, formulate the formalized adversarial training of deep hashing into a unified minimax optimization under the guidance of the generated mainstay codes. Extensive experiments on benchmark datasets show superb attack performance against the state-of-the-art algorithms, meanwhile, the proposed adversarial training can effectively eliminate adversarial perturbations for trustworthy deep hashing-based retrieval. Our code is available at https://github.com/xandery-geek/SAAT.
Related papers
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Reliable and Efficient Evaluation of Adversarial Robustness for Deep
Hashing-Based Retrieval [20.3473596316839]
We propose a novel Pharos-guided Attack, dubbed PgA, to evaluate the adversarial robustness of deep hashing networks reliably and efficiently.
PgA can directly conduct a reliable and efficient attack on deep hashing-based retrieval by maximizing the similarity between the hash code of the adversarial example and the pharos code.
arXiv Detail & Related papers (2023-03-22T15:36:19Z) - CgAT: Center-Guided Adversarial Training for Deep Hashing-Based
Retrieval [12.421908811085627]
We present a min-max based Center-guided Adversarial Training, namely CgAT, to improve the iteration of deep hashing networks.
CgAT learns to mitigate the effects of adversarial samples by minimizing the Hamming distance to the center codes.
Compared with the current state-of-the-art defense method, we significantly improve the defense performance by an average of 18.61%.
arXiv Detail & Related papers (2022-04-18T04:51:08Z) - Prototype-supervised Adversarial Network for Targeted Attack of Deep
Hashing [65.32148145602865]
deep hashing networks are vulnerable to adversarial examples.
We propose a novel prototype-supervised adversarial network (ProS-GAN)
To the best of our knowledge, this is the first generation-based method to attack deep hashing networks.
arXiv Detail & Related papers (2021-05-17T00:31:37Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
We propose a new method named textbfComprehensive stextbfImilarity textbfMining and ctextbfOnsistency leartextbfNing (CIMON)
First, we use global refinement and similarity statistical distribution to obtain reliable and smooth guidance. Second, both semantic and contrastive consistency learning are introduced to derive both disturb-invariant and discriminative hash codes.
arXiv Detail & Related papers (2020-10-15T14:47:14Z) - Deep Hashing with Hash-Consistent Large Margin Proxy Embeddings [65.36757931982469]
Image hash codes are produced by binarizing embeddings of convolutional neural networks (CNN) trained for either classification or retrieval.
The use of a fixed set of proxies (weights of the CNN classification layer) is proposed to eliminate this ambiguity.
The resulting hash-consistent large margin (HCLM) proxies are shown to encourage saturation of hashing units, thus guaranteeing a small binarization error.
arXiv Detail & Related papers (2020-07-27T23:47:43Z) - Targeted Attack for Deep Hashing based Retrieval [57.582221494035856]
We propose a novel method, dubbed deep hashing targeted attack (DHTA), to study the targeted attack on such retrieval.
We first formulate the targeted attack as a point-to-set optimization, which minimizes the average distance between the hash code of an adversarial example and those of a set of objects with the target label.
To balance the performance and perceptibility, we propose to minimize the Hamming distance between the hash code of the adversarial example and the anchor code under the $ellinfty$ restriction on the perturbation.
arXiv Detail & Related papers (2020-04-15T08:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.