Tractable MCMC for Private Learning with Pure and Gaussian Differential Privacy
- URL: http://arxiv.org/abs/2310.14661v2
- Date: Wed, 1 May 2024 05:29:26 GMT
- Title: Tractable MCMC for Private Learning with Pure and Gaussian Differential Privacy
- Authors: Yingyu Lin, Yi-An Ma, Yu-Xiang Wang, Rachel Redberg, Zhiqi Bu,
- Abstract summary: Posterior sampling provides $varepsilon$-pure differential privacy guarantees.
It does not suffer from potentially unbounded privacy breach introduced by $(varepsilon,delta)$-approximate DP.
In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo.
- Score: 23.12198546384976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Posterior sampling, i.e., exponential mechanism to sample from the posterior distribution, provides $\varepsilon$-pure differential privacy (DP) guarantees and does not suffer from potentially unbounded privacy breach introduced by $(\varepsilon,\delta)$-approximate DP. In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo (MCMC), thus re-introducing the unappealing $\delta$-approximation error into the privacy guarantees. To bridge this gap, we propose the Approximate SAample Perturbation (abbr. ASAP) algorithm which perturbs an MCMC sample with noise proportional to its Wasserstein-infinity ($W_\infty$) distance from a reference distribution that satisfies pure DP or pure Gaussian DP (i.e., $\delta=0$). We then leverage a Metropolis-Hastings algorithm to generate the sample and prove that the algorithm converges in $W_\infty$ distance. We show that by combining our new techniques with a localization step, we obtain the first nearly linear-time algorithm that achieves the optimal rates in the DP-ERM problem with strongly convex and smooth losses.
Related papers
- Statistical Inference for Privatized Data with Unknown Sample Size [7.933465724913661]
We develop both theory and algorithms to analyze privatized data in the unbounded differential privacy(DP)
We show that the distance between the sampling distributions under unbounded DP and bounded DP goes to zero as the sample size $n$ goes to infinity.
arXiv Detail & Related papers (2024-06-10T13:03:20Z) - Near-Optimal differentially private low-rank trace regression with guaranteed private initialization [0.0]
We study differentially private (DP) estimation of a rank-$r$ matrix $M in RRd_1times d$ under the trace regression model.
We also propose a differentially private algorithm for estimating $M$ based on Riemannian optimization (DP-RGrad)
It is shown that the estimator given by DP-RGrad attains the optimal convergence rate in a weaker notion of differential privacy.
arXiv Detail & Related papers (2024-03-24T03:57:21Z) - Privately Estimating a Gaussian: Efficient, Robust and Optimal [6.901744415870126]
We give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models.
In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error.
For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $widetilde O(d)$, improving on a $widetilde O(d1.5)$ bound from prior work.
arXiv Detail & Related papers (2022-12-15T18:27:39Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
We show that $O(k log L)$ samples suffice to guarantee that the signal is close to any vector that minimizes an amplitude-based empirical loss function.
We adapt this result to sparse phase retrieval, and show that $O(s log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional.
arXiv Detail & Related papers (2021-06-29T12:49:54Z) - Differentially Private Federated Learning via Inexact ADMM [0.0]
Differential privacy (DP) techniques can be applied to the federated learning model to protect data privacy against inference attacks.
We develop a DP inexact alternating direction method of multipliers algorithm that solves a sequence of trust-region subproblems.
Our algorithm reduces the testing error by at most $22%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
arXiv Detail & Related papers (2021-06-11T02:28:07Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
We study the learnability of halfspaces in the presence of Tsybakov noise.
We give an algorithm that achieves misclassification error $epsilon$ with respect to the true halfspace.
arXiv Detail & Related papers (2020-06-11T14:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.