論文の概要: BM2CP: Efficient Collaborative Perception with LiDAR-Camera Modalities
- arxiv url: http://arxiv.org/abs/2310.14702v1
- Date: Mon, 23 Oct 2023 08:45:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 21:29:28.821229
- Title: BM2CP: Efficient Collaborative Perception with LiDAR-Camera Modalities
- Title(参考訳): BM2CP:LiDARカメラによる効率的な協調知覚
- Authors: Binyu Zhao, Wei Zhang, Zhaonian Zou
- Abstract要約: 我々は,LiDARとカメラを用いた協調認識パラダイムBM2CPを提案し,効率的なマルチモーダル認識を実現する。
センサーの1つ、同じまたは異なるタイプのエージェントが欠落している場合に対処することができる。
提案手法は,シミュレーションおよび実世界の自律走行シナリオにおいて,50倍の通信量で最先端の手法より優れる。
- 参考スコア(独自算出の注目度): 5.034692611033509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative perception enables agents to share complementary perceptual
information with nearby agents. This would improve the perception performance
and alleviate the issues of single-view perception, such as occlusion and
sparsity. Most existing approaches mainly focus on single modality (especially
LiDAR), and not fully exploit the superiority of multi-modal perception. We
propose a collaborative perception paradigm, BM2CP, which employs LiDAR and
camera to achieve efficient multi-modal perception. It utilizes LiDAR-guided
modal fusion, cooperative depth generation and modality-guided intermediate
fusion to acquire deep interactions among modalities of different agents,
Moreover, it is capable to cope with the special case where one of the sensors,
same or different type, of any agent is missing. Extensive experiments validate
that our approach outperforms the state-of-the-art methods with 50X lower
communication volumes in both simulated and real-world autonomous driving
scenarios. Our code is available at https://github.com/byzhaoAI/BM2CP.
- Abstract(参考訳): 協調的知覚により、エージェントは近くのエージェントと補完的な知覚情報を共有できる。
これにより、知覚性能が向上し、オクルージョンやスパーシリティといった単一視点知覚の問題が緩和される。
既存のアプローチのほとんどは、主に単一モダリティ(特にLiDAR)に焦点を当てており、マルチモーダル知覚の優位性を十分に活用していない。
我々は,LiDARとカメラを用いた協調認識パラダイムBM2CPを提案し,効率的なマルチモーダル認識を実現する。
LiDAR-guided modal fusion, 協調深度生成, およびModality-guided intermediate fusionを用いて、異なるエージェントのモード間のディープインタラクションを取得し、また、任意のエージェントのセンサーの1つ、同一または異なるタイプのセンサーが欠落している特別なケースに対処することができる。
シミュレーションおよび実世界の自動運転シナリオにおいて,本手法が50倍の通信量で最先端の手法より優れていることを示す。
私たちのコードはhttps://github.com/byzhaoAI/BM2CPで利用可能です。
関連論文リスト
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
我々は,モダリティごとの個別表現を学習し,維持することのできる,新しいモダリティインタラクション戦略を導入する。
DeepInteraction++はマルチモーダルなインタラクション・フレームワークであり、マルチモーダルな表現型インタラクション・エンコーダとマルチモーダルな予測型インタラクション・デコーダを特徴とする。
実験では,3次元物体検出とエンドツーエンドの自律走行の両方において,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-09T14:04:21Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Selectively Sharing Experiences Improves Multi-Agent Reinforcement Learning [9.25057318925143]
エージェントは他のエージェントと、トレーニング中に観察される遷移の限られた数で共有する、新しいマルチエージェントRLアプローチを提案する。
提案手法は,ベースラインの非共有型分散トレーニングと最先端のマルチエージェントRLアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2023-11-01T21:35:32Z) - MACP: Efficient Model Adaptation for Cooperative Perception [23.308578463976804]
協調機能を備えた単エージェント事前学習モデルを備えたMACPという新しいフレームワークを提案する。
提案手法は,協調観測を効果的に活用し,他の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-10-25T14:24:42Z) - Egocentric RGB+Depth Action Recognition in Industry-Like Settings [50.38638300332429]
本研究は,産業的な環境下での自我中心のRGBとDepthモダリティからの行動の認識に焦点を当てる。
我々のフレームワークは、RGBとDepthの両方のモダリティを効果的に符号化する3DビデオSWIN変換器に基づいている。
また,ICIAP 2023におけるマルチモーダル動作認識チャレンジにおいて,本手法が第1位を確保した。
論文 参考訳(メタデータ) (2023-09-25T08:56:22Z) - Practical Collaborative Perception: A Framework for Asynchronous and
Multi-Agent 3D Object Detection [9.967263440745432]
咬合は、LiDARベースのオブジェクト検出方法において大きな課題である。
最先端のV2X手法は、中間協調手法を用いて性能帯域幅のトレードオフを解消する。
我々は,従来の方法よりも帯域幅と性能のトレードオフを向上する,シンプルで効果的な協調手法を考案した。
論文 参考訳(メタデータ) (2023-07-04T03:49:42Z) - Collaborative Visual Navigation [69.20264563368762]
マルチエージェント視覚ナビゲーション(MAVN)のための大規模3次元データセットCollaVNを提案する。
様々なMAVN変種を探索し、この問題をより一般化する。
メモリ拡張通信フレームワークを提案する。各エージェントには、通信情報を永続的に保存するプライベートな外部メモリが備わっている。
論文 参考訳(メタデータ) (2021-07-02T15:48:16Z) - DIRV: Dense Interaction Region Voting for End-to-End Human-Object
Interaction Detection [53.40028068801092]
本稿では,HOI問題に対するインタラクション領域という新しい概念に基づいて,新しい一段階HOI検出手法を提案する。
従来の手法とは異なり,本手法は人-物対ごとに異なるスケールにわたる密集した相互作用領域に焦点をあてる。
単一相互作用領域の検出欠陥を補うために,我々は新しい投票戦略を導入する。
論文 参考訳(メタデータ) (2020-10-02T13:57:58Z) - A Visual Communication Map for Multi-Agent Deep Reinforcement Learning [7.003240657279981]
マルチエージェント学習は、隠蔽された通信媒体を割り当てる上で大きな課題となる。
最近の研究は一般的に、エージェント間の通信を可能にするために、特殊なニューラルネットワークと強化学習を組み合わせる。
本稿では,多数のエージェントを扱うだけでなく,異種機能エージェント間の協調を可能にする,よりスケーラブルなアプローチを提案する。
論文 参考訳(メタデータ) (2020-02-27T02:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。