Theoretically Grounded Loss Functions and Algorithms for Score-Based Multi-Class Abstention
- URL: http://arxiv.org/abs/2310.14770v2
- Date: Sun, 31 Mar 2024 09:37:14 GMT
- Title: Theoretically Grounded Loss Functions and Algorithms for Score-Based Multi-Class Abstention
- Authors: Anqi Mao, Mehryar Mohri, Yutao Zhong,
- Abstract summary: We introduce new families of surrogate losses for the abstention loss function.
We prove strong non-asymptotic and hypothesis set-specific consistency guarantees for these surrogate losses.
Our results show that the relative performance of the state-of-the-art score-based surrogate losses can vary across datasets.
- Score: 30.389055604165222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning with abstention is a key scenario where the learner can abstain from making a prediction at some cost. In this paper, we analyze the score-based formulation of learning with abstention in the multi-class classification setting. We introduce new families of surrogate losses for the abstention loss function, which include the state-of-the-art surrogate losses in the single-stage setting and a novel family of loss functions in the two-stage setting. We prove strong non-asymptotic and hypothesis set-specific consistency guarantees for these surrogate losses, which upper-bound the estimation error of the abstention loss function in terms of the estimation error of the surrogate loss. Our bounds can help compare different score-based surrogates and guide the design of novel abstention algorithms by minimizing the proposed surrogate losses. We experimentally evaluate our new algorithms on CIFAR-10, CIFAR-100, and SVHN datasets and the practical significance of our new surrogate losses and two-stage abstention algorithms. Our results also show that the relative performance of the state-of-the-art score-based surrogate losses can vary across datasets.
Related papers
- EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting in Classification [1.3778851745408134]
We propose a novel ensemble method, namely EnsLoss, to combine loss functions within the Empirical risk minimization framework.
We first transform the CC conditions of losses into loss-derivatives, thereby bypassing the need for explicit loss functions.
We theoretically establish the statistical consistency of our approach and provide insights into its benefits.
arXiv Detail & Related papers (2024-09-02T02:40:42Z) - LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization [56.67706781191521]
An adversary can introduce outliers by corrupting loss functions in an arbitrary number of k, unknown to the learner.
We present a robust online rounds optimization framework, where an adversary can introduce outliers by corrupting loss functions in an arbitrary number of k, unknown.
arXiv Detail & Related papers (2024-08-12T17:08:31Z) - Cardinality-Aware Set Prediction and Top-$k$ Classification [33.00927499966789]
We present a novel approach that aims to learn an accurate top-$k$ set predictor while maintaining a low cardinality.
We introduce a new target loss function tailored to this setting that accounts for both the classification error and the cardinality of the set predicted.
Minimizing these loss functions leads to new cardinality-aware algorithms that we describe in detail.
arXiv Detail & Related papers (2024-07-09T17:57:07Z) - Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DML aims to learn a discriminative high-dimensional embedding space for downstream tasks like classification, clustering, and retrieval.
To maintain the structure of embedding space and avoid feature collapse, we propose a novel loss function called Anti-Collapse Loss.
Comprehensive experiments on benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-07-03T13:44:20Z) - Top-$k$ Classification and Cardinality-Aware Prediction [30.389055604165222]
We show that comp-sum and constrained losses are supported by $H$-consistency bounds with respect to the top-$k$ loss.
We introduce cardinality-aware loss functions through instance-dependent cost-sensitive learning.
Minimizing these losses leads to new cardinality-aware algorithms for top-$k$ classification.
arXiv Detail & Related papers (2024-03-28T17:45:03Z) - Predictor-Rejector Multi-Class Abstention: Theoretical Analysis and Algorithms [30.389055604165222]
We study the key framework of learning with abstention in the multi-class classification setting.
In this setting, the learner can choose to abstain from making a prediction with some pre-defined cost.
We introduce several new families of surrogate losses for which we prove strong non-asymptotic and hypothesis set-specific consistency guarantees.
arXiv Detail & Related papers (2023-10-23T10:16:27Z) - Learning with Multiclass AUC: Theory and Algorithms [141.63211412386283]
Area under the ROC curve (AUC) is a well-known ranking metric for problems such as imbalanced learning and recommender systems.
In this paper, we start an early trial to consider the problem of learning multiclass scoring functions via optimizing multiclass AUC metrics.
arXiv Detail & Related papers (2021-07-28T05:18:10Z) - A Symmetric Loss Perspective of Reliable Machine Learning [87.68601212686086]
We review how a symmetric loss can yield robust classification from corrupted labels in balanced error rate (BER) minimization.
We demonstrate how the robust AUC method can benefit natural language processing in the problem where we want to learn only from relevant keywords.
arXiv Detail & Related papers (2021-01-05T06:25:47Z) - Adversarially Robust Learning via Entropic Regularization [31.6158163883893]
We propose a new family of algorithms, ATENT, for training adversarially robust deep neural networks.
Our approach achieves competitive (or better) performance in terms of robust classification accuracy.
arXiv Detail & Related papers (2020-08-27T18:54:43Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z) - Calibrated Surrogate Losses for Adversarially Robust Classification [92.37268323142307]
We show that no convex surrogate loss is respect with respect to adversarial 0-1 loss when restricted to linear models.
We also show that if the underlying distribution satisfies the Massart's noise condition, convex losses can also be calibrated in the adversarial setting.
arXiv Detail & Related papers (2020-05-28T02:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.