LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization
- URL: http://arxiv.org/abs/2408.06297v1
- Date: Mon, 12 Aug 2024 17:08:31 GMT
- Title: LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization
- Authors: Adarsh Barik, Anand Krishna, Vincent Y. F. Tan,
- Abstract summary: An adversary can introduce outliers by corrupting loss functions in an arbitrary number of k, unknown to the learner.
We present a robust online rounds optimization framework, where an adversary can introduce outliers by corrupting loss functions in an arbitrary number of k, unknown.
- Score: 56.67706781191521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a robust online convex optimization framework, where an adversary can introduce outliers by corrupting loss functions in an arbitrary number of rounds k, unknown to the learner. Our focus is on a novel setting allowing unbounded domains and large gradients for the losses without relying on a Lipschitz assumption. We introduce the Log Exponential Adjusted Robust and iNvex (LEARN) loss, a non-convex (invex) robust loss function to mitigate the effects of outliers and develop a robust variant of the online gradient descent algorithm by leveraging the LEARN loss. We establish tight regret guarantees (up to constants), in a dynamic setting, with respect to the uncorrupted rounds and conduct experiments to validate our theory. Furthermore, we present a unified analysis framework for developing online optimization algorithms for non-convex (invex) losses, utilizing it to provide regret bounds with respect to the LEARN loss, which may be of independent interest.
Related papers
- Refined Risk Bounds for Unbounded Losses via Transductive Priors [58.967816314671296]
We revisit the sequential variants of linear regression with the squared loss, classification problems with hinge loss, and logistic regression.
Our key tools are based on the exponential weights algorithm with carefully chosen transductive priors.
arXiv Detail & Related papers (2024-10-29T00:01:04Z) - EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting in Classification [1.3778851745408134]
We propose a novel ensemble method, namely EnsLoss, to combine loss functions within the Empirical risk minimization framework.
We first transform the CC conditions of losses into loss-derivatives, thereby bypassing the need for explicit loss functions.
We theoretically establish the statistical consistency of our approach and provide insights into its benefits.
arXiv Detail & Related papers (2024-09-02T02:40:42Z) - Robust Loss Functions for Training Decision Trees with Noisy Labels [4.795403008763752]
We consider training decision trees using noisily labeled data, focusing on loss functions that can lead to robust learning algorithms.
First, we offer novel theoretical insights on the robustness of many existing loss functions in the context of decision tree learning.
Second, we introduce a framework for constructing robust loss functions, called distribution losses.
arXiv Detail & Related papers (2023-12-20T11:27:46Z) - Anti-Exploration by Random Network Distillation [63.04360288089277]
We show that a naive choice of conditioning for the Random Network Distillation (RND) is not discriminative enough to be used as an uncertainty estimator.
We show that this limitation can be avoided with conditioning based on Feature-wise Linear Modulation (FiLM)
We evaluate it on the D4RL benchmark, showing that it is capable of achieving performance comparable to ensemble-based methods and outperforming ensemble-free approaches by a wide margin.
arXiv Detail & Related papers (2023-01-31T13:18:33Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Stabilizing Off-Policy Deep Reinforcement Learning from Pixels [9.998078491879145]
Off-policy reinforcement learning from pixel observations is notoriously unstable.
We show that these instabilities arise from performing temporal-difference learning with a convolutional encoder and low-magnitude rewards.
We propose A-LIX, a method providing adaptive regularization to the encoder's gradients that explicitly prevents the occurrence of catastrophic self-overfitting.
arXiv Detail & Related papers (2022-07-03T08:52:40Z) - Near-optimal Offline Reinforcement Learning with Linear Representation:
Leveraging Variance Information with Pessimism [65.46524775457928]
offline reinforcement learning seeks to utilize offline/historical data to optimize sequential decision-making strategies.
We study the statistical limits of offline reinforcement learning with linear model representations.
arXiv Detail & Related papers (2022-03-11T09:00:12Z) - Dynamic Regret for Strongly Adaptive Methods and Optimality of Online
KRR [13.165557713537389]
We show that Strongly Adaptive (SA) algorithms can be viewed as a principled way of controlling dynamic regret.
We derive a new lower bound on a certain penalized regret which establishes the near minimax optimality of online Kernel Ridge Regression (KRR)
arXiv Detail & Related papers (2021-11-22T21:52:47Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - Online non-convex optimization with imperfect feedback [33.80530308979131]
We consider the problem of online learning with non- losses.
In terms of feedback, we assume that the learner observes - or otherwise constructs - an inexact model for the loss function at each stage.
We propose a mixed-strategy learning policy based on dual averaging.
arXiv Detail & Related papers (2020-10-16T16:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.