A Study on Knowledge Graph Embeddings and Graph Neural Networks for Web
Of Things
- URL: http://arxiv.org/abs/2310.14866v1
- Date: Mon, 23 Oct 2023 12:36:33 GMT
- Title: A Study on Knowledge Graph Embeddings and Graph Neural Networks for Web
Of Things
- Authors: Rohith Teja Mittakola, Thomas Hassan
- Abstract summary: In the future, Orange's take on a knowledge graph in the domain of the Web Of Things (WoT) is to provide a digital representation of the physical world.
In this paper, we explore state-of-the-art knowledge graph embedding (KGE) methods to learn numerical representations of the graph entities.
We also investigate Graph neural networks (GNN) alongside KGEs and compare their performance on the same downstream tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph data structures are widely used to store relational information between
several entities. With data being generated worldwide on a large scale, we see
a significant growth in the generation of knowledge graphs. Thing in the future
is Orange's take on a knowledge graph in the domain of the Web Of Things (WoT),
where the main objective of the platform is to provide a digital representation
of the physical world and enable cross-domain applications to be built upon
this massive and highly connected graph of things. In this context, as the
knowledge graph grows in size, it is prone to have noisy and messy data. In
this paper, we explore state-of-the-art knowledge graph embedding (KGE) methods
to learn numerical representations of the graph entities and, subsequently,
explore downstream tasks like link prediction, node classification, and triple
classification. We also investigate Graph neural networks (GNN) alongside KGEs
and compare their performance on the same downstream tasks. Our evaluation
highlights the encouraging performance of both KGE and GNN-based methods on
node classification, and the superiority of GNN approaches in the link
prediction task. Overall, we show that state-of-the-art approaches are relevant
in a WoT context, and this preliminary work provides insights to implement and
evaluate them in this context.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Knowledge Enhanced Graph Neural Networks for Graph Completion [0.0]
Knowledge Enhanced Graph Neural Networks (KeGNN) is a neuro-symbolic framework for graph completion.
KeGNN consists of a graph neural network as a base upon which knowledge enhancement layers are stacked.
We instantiate KeGNN in conjunction with two state-of-the-art graph neural networks, Graph Convolutional Networks and Graph Attention Networks.
arXiv Detail & Related papers (2023-03-27T07:53:43Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
Graph-level Neural Networks (GLNNs, deep learning-based graph-level learning methods) have been attractive due to their superiority in modeling high-dimensional data.
We propose a systematic taxonomy covering GLNNs upon deep neural networks, graph neural networks, and graph pooling.
arXiv Detail & Related papers (2022-05-31T06:16:55Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Learning Graph Representations [0.0]
Graph Neural Networks (GNNs) are efficient ways to get insight into large dynamic graph datasets.
In this paper, we discuss the graph convolutional neural networks graph autoencoders and Social-temporal graph neural networks.
arXiv Detail & Related papers (2021-02-03T12:07:55Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.