Location Estimation and Recovery using 5G Positioning: Thwarting GNSS Spoofing Attacks
- URL: http://arxiv.org/abs/2310.14885v1
- Date: Mon, 23 Oct 2023 12:54:13 GMT
- Title: Location Estimation and Recovery using 5G Positioning: Thwarting GNSS Spoofing Attacks
- Authors: Aneet Kumar Dutta, Sebastian Brandt, Mridula Singh,
- Abstract summary: cryptographic spoofers can prevent safe navigation and tracking of road users.
Spoofing can lead to loss of assets, inaccurate fare estimation, enforcing the wrong speed limit, miscalculated toll tax, passengers reaching an incorrect location.
We design the Location Estimation and Recovery(LER) systems to estimate the absolute position using the combination of correct and 5G positioning.
- Score: 2.8711436763354237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The availability of cheap GNSS spoofers can prevent safe navigation and tracking of road users. It can lead to loss of assets, inaccurate fare estimation, enforcing the wrong speed limit, miscalculated toll tax, passengers reaching an incorrect location, etc. The techniques designed to prevent and detect spoofing by using cryptographic solutions or receivers capable of differentiating legitimate and attack signals are insufficient in detecting GNSS spoofing of road users. Recent studies, testbeds, and 3GPP standards are exploring the possibility of hybrid positioning, where GNSS data will be combined with the 5G-NR positioning to increase the security and accuracy of positioning. We design the Location Estimation and Recovery(LER) systems to estimate the correct absolute position using the combination of GNSS and 5G positioning with other road users, where a subset of road users can be malicious and collude to prevent spoofing detection. Our Location Verification Protocol extends the understanding of Message Time of Arrival Codes (MTAC) to prevent attacks against malicious provers. The novel Recovery and Meta Protocol uses road users' dynamic and unpredictable nature to detect GNSS spoofing. This protocol provides fast detection of GNSS spoofing with a very low rate of false positives and can be customized to a large family of settings. Even in a (highly unrealistic) worst-case scenario where each user is malicious with a probability of as large as 0.3, our protocol detects GNSS spoofing with high probability after communication and ranging with at most 20 road users, with a false positive rate close to 0. SUMO simulations for road traffic show that we can detect GNSS spoofing in 2.6 minutes since its start under moderate traffic conditions.
Related papers
- Time-based GNSS attack detection [0.0]
Cross-checking the provided time against alternative trusted time sources can lead to attack detection aiming at controlling the receiver time.
We implement adversaries spanning from simplistic spoofers to advanced ones synchronized with the constellation.
The method is largely agnostic to the satellite constellation and the attacker type, making time-based data validation of information compatible with existing receivers and readily deployable.
arXiv Detail & Related papers (2025-02-06T08:28:41Z) - Your Car Tells Me Where You Drove: A Novel Path Inference Attack via CAN Bus and OBD-II Data [57.22545280370174]
On Path Diagnostic - Intrusion & Inference (OPD-II) is a novel path inference attack leveraging a physical car model and a map matching algorithm.
We implement our attack on a set of four different cars and a total number of 41 tracks in different road and traffic scenarios.
arXiv Detail & Related papers (2024-06-30T04:21:46Z) - Extending RAIM with a Gaussian Mixture of Opportunistic Information [1.9688858888666714]
Original receiver autonomous integrity monitoring (RAIM) was not designed for securing.
We extend RAIM by incorporating all opportunistic information, i.e., measurements from terrestrial infrastructures and onboard sensors.
The objective is to assess the likelihood of spoofing by analyzing locations derived from extended RAIM solutions.
arXiv Detail & Related papers (2024-02-05T19:03:18Z) - AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
This study investigates whether specific GPS signals can easily mislead the multi-agent perception system.
We introduce textscAdvGPS, a method capable of generating adversarial GPS signals which are also stealthy for individual agents within the system.
Our experiments on the OPV2V dataset demonstrate that these attacks substantially undermine the performance of state-of-the-art methods.
arXiv Detail & Related papers (2024-01-30T23:13:41Z) - Unveiling the Stealthy Threat: Analyzing Slow Drift GPS Spoofing Attacks for Autonomous Vehicles in Urban Environments and Enabling the Resilience [4.898754501085215]
This study explores a stealthy slow drift GPS spoofing attack, replicating the victim AV's satellite reception pattern.
The attack is designed to gradually deviate from the correct route, making real-time detection challenging.
Changing the pseudo ranges confuses the AV, leading it to incorrect destinations while remaining oblivious to the manipulation.
arXiv Detail & Related papers (2024-01-02T17:36:07Z) - Experimental Validation of Sensor Fusion-based GNSS Spoofing Attack
Detection Framework for Autonomous Vehicles [5.624009710240032]
We present a sensor fusion-based spoofing attack detection framework for Autonomous Vehicles.
Experiments are conducted in Tuscaloosa, AL, mimicking urban road structures.
Results demonstrate the framework's ability to detect various sophisticated spoofing attacks, even including slow drifting attacks.
arXiv Detail & Related papers (2024-01-02T17:30:46Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Sample-Efficient Safety Assurances using Conformal Prediction [57.92013073974406]
Early warning systems can provide alerts when an unsafe situation is imminent.
To reliably improve safety, these warning systems should have a provable false negative rate.
We present a framework that combines a statistical inference technique known as conformal prediction with a simulator of robot/environment dynamics.
arXiv Detail & Related papers (2021-09-28T23:00:30Z) - Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles [5.579370215490055]
We have developed a prediction-based spoofing attack detection strategy using the long short-term memory (LSTM) model.
Based on the predicted distance traveled between the current location and the immediate future location, a threshold value is established.
Our analysis revealed that the prediction-based spoofed attack detection strategy can successfully detect the attack in real-time.
arXiv Detail & Related papers (2020-10-16T18:26:59Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
Google and Apple have jointly provided an API for exposure notification in order to implement decentralized contract tracing apps using Bluetooth Low Energy.
We demonstrate that in real-world scenarios the GAP design is vulnerable to (i) profiling and possibly de-anonymizing persons, and (ii) relay-based wormhole attacks that basically can generate fake contacts.
arXiv Detail & Related papers (2020-06-10T16:05:05Z) - Detection in Crowded Scenes: One Proposal, Multiple Predictions [79.28850977968833]
We propose a proposal-based object detector, aiming at detecting highly-overlapped instances in crowded scenes.
The key of our approach is to let each proposal predict a set of correlated instances rather than a single one in previous proposal-based frameworks.
Our detector can obtain 4.9% AP gains on challenging CrowdHuman dataset and 1.0% $textMR-2$ improvements on CityPersons dataset.
arXiv Detail & Related papers (2020-03-20T09:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.