論文の概要: Learning Real-World Image De-Weathering with Imperfect Supervision
- arxiv url: http://arxiv.org/abs/2310.14958v3
- Date: Mon, 25 Dec 2023 02:17:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 21:44:30.986942
- Title: Learning Real-World Image De-Weathering with Imperfect Supervision
- Title(参考訳): 不完全なスーパービジョンによる実世界の画像復調学習
- Authors: Xiaohui Liu and Zhilu Zhang and Xiaohe Wu and Chaoyu Feng and Xiaotao
Wang and Lei Lei and Wangmeng Zuo
- Abstract要約: 既存の現実世界のデヒータリングデータセットは、接地トラス画像と入力された劣化画像の間に、一貫性のない照明、位置、テクスチャを示すことが多い。
我々は、入力劣化画像と可能な限り一貫性のある擬似ラベルを生成するための一貫性ラベルコンストラクタ(CLC)を開発した。
我々は,従来の不完全ラベルと擬似ラベルを組み合わせることで,情報割当戦略による脱ウェザリングモデルを共同で監督する。
- 参考スコア(独自算出の注目度): 57.748585821252824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world image de-weathering aims at removing various undesirable
weather-related artifacts. Owing to the impossibility of capturing image pairs
concurrently, existing real-world de-weathering datasets often exhibit
inconsistent illumination, position, and textures between the ground-truth
images and the input degraded images, resulting in imperfect supervision. Such
non-ideal supervision negatively affects the training process of learning-based
de-weathering methods. In this work, we attempt to address the problem with a
unified solution for various inconsistencies. Specifically, inspired by
information bottleneck theory, we first develop a Consistent Label Constructor
(CLC) to generate a pseudo-label as consistent as possible with the input
degraded image while removing most weather-related degradations. In particular,
multiple adjacent frames of the current input are also fed into CLC to enhance
the pseudo-label. Then we combine the original imperfect labels and
pseudo-labels to jointly supervise the de-weathering model by the proposed
Information Allocation Strategy (IAS). During testing, only the de-weathering
model is used for inference. Experiments on two real-world de-weathering
datasets show that our method helps existing de-weathering models achieve
better performance. Codes are available at
https://github.com/1180300419/imperfect-deweathering.
- Abstract(参考訳): 現実のイメージデウェザリングは、さまざまな好ましくない気象関連アーティファクトを取り除くことを目的としている。
画像ペアを同時にキャプチャすることができないため、既存の現実世界のデウェザリングデータセットは、接地トラス画像と入力された劣化画像の間の一貫性のない照明、位置、テクスチャをしばしば示し、不完全な監視をもたらす。
このような非理想的監督は、学習に基づく脱湿法の訓練過程に悪影響を及ぼす。
本研究では,様々な不整合に対する統一解を用いてこの問題に対処する。
具体的には,情報ボトルネック理論に触発されて,入力劣化画像と可能な限り一貫性のある擬似ラベルを生成するための一貫性ラベルコンストラクタ(clc)を開発した。
特に、現在の入力の複数の隣接フレームもCLCに入力され、擬似ラベルが強化される。
次に,従来の不完全ラベルと擬似ラベルを組み合わせて,提案した情報割当戦略(IAS)による脱ウェザリングモデルを共同で監督する。
テスト中は、推論にデヒータリングモデルのみが使用される。
実世界のデウィータリングデータセットを2つ実験した結果,既存のデウィータリングモデルの性能向上に寄与することがわかった。
コードはhttps://github.com/1180300419/imperfect-deweatheringで入手できる。
関連論文リスト
- SemiDDM-Weather: A Semi-supervised Learning Framework for All-in-one Adverse Weather Removal [57.52777076116241]
逆天候除去は、悪天候下で透明な視界を回復することを目的としている。
本稿では教師ネットワーク上に構築された半教師付きオールインワン悪天候除去フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-29T12:12:22Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPM) は近年,条件付きおよび非条件付き画像生成において顕著な成果を上げている。
我々はGradPaintを紹介し、グローバルな一貫性のあるイメージに向けて世代を操る。
我々は、様々なデータセットで訓練された拡散モデルによく適応し、現在最先端の教師付きおよび教師なしの手法を改善している。
論文 参考訳(メタデータ) (2023-09-18T09:36:24Z) - Robust Monocular Depth Estimation under Challenging Conditions [81.57697198031975]
最先端のモノクル深度推定手法は、難解な照明や気象条件下では信頼性が低い。
我々はmd4allでこれらの安全クリティカルな問題に取り組む: 単純で効果的なソリューションで、悪条件と理想条件の両方で確実に機能する。
論文 参考訳(メタデータ) (2023-08-18T17:59:01Z) - Video Shadow Detection via Spatio-Temporal Interpolation Consistency
Training [31.115226660100294]
本稿では、ラベル付き画像とともにラベル付きビデオフレームを画像陰影検出ネットワークトレーニングに供給するフレームワークを提案する。
次に,画素ワイド分類における一般化の促進のために,空間的および時間的整合性の制約を導出する。
さらに,画像のマルチスケール影知識学習のためのスケール・アウェア・ネットワークを設計する。
論文 参考訳(メタデータ) (2022-06-17T14:29:51Z) - Unsupervised Foggy Scene Understanding via Self Spatial-Temporal Label
Diffusion [51.11295961195151]
運転シーンの霧画像列の特徴を利用して、自信ある擬似ラベルを密度化する。
局所的な空間的類似性と逐次画像データの隣接時間対応の2つの発見に基づいて,新たなターゲット・ドメイン駆動擬似ラベル拡散方式を提案する。
本手法は,2つの天然霧のデータセット上で51.92%,53.84%の平均交叉結合(mIoU)を達成するのに有効である。
論文 参考訳(メタデータ) (2022-06-10T05:16:50Z) - ART-SS: An Adaptive Rejection Technique for Semi-Supervised restoration
for adverse weather-affected images [24.03416814412226]
SSR法の性能に及ぼすラベルなしデータの影響について検討する。
性能を劣化させる未ラベル画像の拒否を行う手法を開発した。
論文 参考訳(メタデータ) (2022-03-17T12:00:31Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
そこで本研究では,現実の汚職とミスアライメントされたトレーニング画像からなる,新しい低照度画像強調データセットを提案する。
本モデルでは,新たに提案したデータセットと,他の一般的な低照度データセットの両方に対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-01-10T03:12:52Z) - Dense Out-of-Distribution Detection by Robust Learning on Synthetic
Negative Data [1.7474352892977458]
道路走行シーンとリモートセンシング画像における分布外異常の検出方法を示す。
我々は,カバレッジ指向学習の目的と異なる解像度でサンプルを生成する能力により,共同で訓練された正規化フローを活用する。
結果として得られたモデルは、道路走行シーンとリモートセンシング画像におけるアウト・オブ・ディストリビューション検出のためのベンチマークに、新たな技術状況を設定した。
論文 参考訳(メタデータ) (2021-12-23T20:35:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。