論文の概要: Fidelity-Enriched Contrastive Search: Reconciling the
Faithfulness-Diversity Trade-Off in Text Generation
- arxiv url: http://arxiv.org/abs/2310.14981v1
- Date: Mon, 23 Oct 2023 14:27:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 19:24:46.339707
- Title: Fidelity-Enriched Contrastive Search: Reconciling the
Faithfulness-Diversity Trade-Off in Text Generation
- Title(参考訳): 忠実性に富んだコントラスト検索:テキスト生成における忠実さと多様性のトレードオフの調和
- Authors: Wei-Lin Chen, Cheng-Kuang Wu, Hsin-Hsi Chen, Chung-Chi Chen
- Abstract要約: FECS (Fidelity-Enriched Contrastive Search) と呼ばれる新しい復号法を提案する。
FECSは、生成されたテキストの繰り返し性をペナルティ化しながら、提供されたソースと意味的に類似したトークンを促進する。
その結果,FECSは高い性能の復号アルゴリズムに匹敵する出力の多様性を維持しつつ,様々な言語モデルサイズにおける忠実さを一貫して向上させることがわかった。
- 参考スコア(独自算出の注目度): 21.096737598952853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the hallucination problem commonly found in natural
language generation tasks. Language models often generate fluent and convincing
content but can lack consistency with the provided source, resulting in
potential inaccuracies. We propose a new decoding method called
Fidelity-Enriched Contrastive Search (FECS), which augments the contrastive
search framework with context-aware regularization terms. FECS promotes tokens
that are semantically similar to the provided source while penalizing
repetitiveness in the generated text. We demonstrate its effectiveness across
two tasks prone to hallucination: abstractive summarization and dialogue
generation. Results show that FECS consistently enhances faithfulness across
various language model sizes while maintaining output diversity comparable to
well-performing decoding algorithms.
- Abstract(参考訳): 本稿では,自然言語生成タスクでよく見られる幻覚問題に対処する。
言語モデルは、しばしば流動的で説得力のあるコンテンツを生成するが、提供されたソースとの整合性が欠如し、潜在的な不正確な結果をもたらす。
コントラスト付き検索フレームワークを文脈対応正規化項で拡張するFdelity-Enriched Contrastive Search (FECS) と呼ばれる新しいデコード手法を提案する。
FECSは、生成されたテキストの繰り返し性をペナルティ化しながら、提供されたソースと意味的に類似したトークンを促進する。
本研究は,抽象的な要約と対話生成という,幻覚化に起因した2つの課題にまたがる効果を示す。
その結果,FECSは高い性能の復号アルゴリズムに匹敵する出力の多様性を維持しつつ,様々な言語モデルサイズにおける忠実さを一貫して向上させることがわかった。
関連論文リスト
- Collapsed Language Models Promote Fairness [88.48232731113306]
偏りのある言語モデルはトークン表現と単語埋め込みの間に崩壊したアライメントを示す。
我々は,幅広い脱バイアス法において,公平性を効果的に向上する原理的な微調整法を設計する。
論文 参考訳(メタデータ) (2024-10-06T13:09:48Z) - Adaptive Contrastive Search: Uncertainty-Guided Decoding for Open-Ended Text Generation [0.20971479389679337]
コントラスト探索を拡張した新しい復号法であるアダプティブコントラスト探索を導入する。
この結果から,異なるモデルアーキテクチャとデータセットの両面でのパフォーマンス向上が示唆された。
論文 参考訳(メタデータ) (2024-07-26T12:23:54Z) - Pixel Sentence Representation Learning [67.4775296225521]
本研究では,視覚表現学習プロセスとして,文レベルのテキスト意味論の学習を概念化する。
タイポスや単語順シャッフルのような視覚的に接地されたテキスト摂動法を採用し、人間の認知パターンに共鳴し、摂動を連続的に認識できるようにする。
我々のアプローチは、大規模に教師なしのトピックアライメントトレーニングと自然言語推論監督によってさらに強化されている。
論文 参考訳(メタデータ) (2024-02-13T02:46:45Z) - DenoSent: A Denoising Objective for Self-Supervised Sentence
Representation Learning [59.4644086610381]
本稿では,他の視点,すなわち文内視点から継承する新たな認知的目的を提案する。
離散ノイズと連続ノイズの両方を導入することで、ノイズの多い文を生成し、モデルを元の形式に復元するように訓練する。
我々の経験的評価は,本手法が意味的テキスト類似性(STS)と幅広い伝達タスクの両面で競合する結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-01-24T17:48:45Z) - Language-Oriented Communication with Semantic Coding and Knowledge
Distillation for Text-to-Image Generation [53.97155730116369]
我々は言語指向意味コミュニケーション(LSC)の新しい枠組みを提唱した。
LSCでは、機械は人間の言語メッセージを使って通信し、SC効率のために自然言語処理(NLP)技術を用いて解釈および操作することができる。
1) テキストプロンプトをキーヘッドワードに圧縮するセマンティック・ソース・コーディング(SSC)、2) セマンティック・チャネル・コーディング(SCC)、2) セマンティック・チャネル・コーディング(SCC)、3) セマンティック・ナレッジ・蒸留(SKD)、3) リスナーの言語学習を通じてリスナーに適応したプロンプトを生成するセマンティック・ナレッジ・蒸留(SKD)の3つの革新的なアルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-09-20T08:19:05Z) - A Contrastive Framework for Neural Text Generation [46.845997620234265]
モデル変性の根底にある理由はトークン表現の異方性分布であることを示す。
モデル表現空間を校正するための対照的な学習目標であるSimCTGと,生成したテキストのコヒーレンスを維持しつつ多様性を高めるためのデコード手法であるコントラスト検索を提案する。
論文 参考訳(メタデータ) (2022-02-13T21:46:14Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
本稿では,構文の変更を行うテキスト拡張手法の3つのカテゴリについて検討する。
音声のタグ付けや依存性解析,セマンティックロールのラベル付けなどにおいて,多種多様な言語ファミリに対して比較を行った。
以上の結果から,mBERTに基づくベースラインの強化により,より高機能化が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-11-18T10:52:48Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
テキスト編集や意味的類似性評価といった自然言語処理タスクにおいて、ペア化されたテキストに重複が頻繁に発生する。
本稿では,マスク・アンド・予測戦略を用いてこの問題に対処することを目的とする。
本稿では,最も長い単語列の単語を隣接する単語とみなし,その位置の分布を予測するためにマスク付き言語モデリング(MLM)を用いる。
セマンティックテキスト類似性の実験では、NDDは様々な意味的差異、特に高い重なり合うペアテキストに対してより敏感であることが示されている。
論文 参考訳(メタデータ) (2021-10-04T03:59:15Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
我々は、ある入力概念のセットに対して妥当な文を生成することを目的としているcommongenベンチマークに焦点を当てる。
生成したテキストの意味的正しさを高めるための戦略を提案する。
論文 参考訳(メタデータ) (2020-12-19T23:23:40Z) - Informed Sampling for Diversity in Concept-to-Text NLG [8.883733362171034]
本稿では,言語生成モデルが確実に生成できる多様性のレベルを探索するために,Imitation Learningアプローチを提案する。
具体的には、任意のタイミングでどの単語が高品質な出力につながるかを識別するように訓練されたメタ分類器を用いて復号処理を強化する。
論文 参考訳(メタデータ) (2020-04-29T17:43:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。