Fidelity-Enriched Contrastive Search: Reconciling the
Faithfulness-Diversity Trade-Off in Text Generation
- URL: http://arxiv.org/abs/2310.14981v1
- Date: Mon, 23 Oct 2023 14:27:45 GMT
- Title: Fidelity-Enriched Contrastive Search: Reconciling the
Faithfulness-Diversity Trade-Off in Text Generation
- Authors: Wei-Lin Chen, Cheng-Kuang Wu, Hsin-Hsi Chen, Chung-Chi Chen
- Abstract summary: We propose a new decoding method called Fidelity-Enriched Contrastive Search (FECS)
FECS promotes tokens that are semantically similar to the provided source while penalizing repetitiveness in the generated text.
Results show that FECS consistently enhances faithfulness across various language model sizes while maintaining output diversity comparable to well-performing decoding algorithms.
- Score: 21.096737598952853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the hallucination problem commonly found in natural
language generation tasks. Language models often generate fluent and convincing
content but can lack consistency with the provided source, resulting in
potential inaccuracies. We propose a new decoding method called
Fidelity-Enriched Contrastive Search (FECS), which augments the contrastive
search framework with context-aware regularization terms. FECS promotes tokens
that are semantically similar to the provided source while penalizing
repetitiveness in the generated text. We demonstrate its effectiveness across
two tasks prone to hallucination: abstractive summarization and dialogue
generation. Results show that FECS consistently enhances faithfulness across
various language model sizes while maintaining output diversity comparable to
well-performing decoding algorithms.
Related papers
- Semantic uncertainty in advanced decoding methods for LLM generation [35.31962554915952]
This study investigates semantic uncertainty in large language model (LLM) outputs across different decoding methods.<n>We analyze how different decoding strategies affect both the diversity and reliability of model outputs.
arXiv Detail & Related papers (2025-06-17T10:09:29Z) - Context-Enhanced Contrastive Search for Improved LLM Text Generation [1.7720658326850143]
The paper proposes a novel enhancement of the well-known Contrastive Search algorithm, Context-Enhanced Contrastive Search ( CECS) with contextual calibration.<n>The proposed scheme introduces several novelties including dynamic contextual importance weighting, multi-level Contrastive Search, and adaptive temperature control, to optimize the balance between fluency, creativity, and precision.<n> Experimental results demonstrate significant improvements in both coherence and relevance of the generated texts by CECS outperforming the existing Contrastive Search techniques.
arXiv Detail & Related papers (2025-04-22T13:00:14Z) - Devising a Set of Compact and Explainable Spoken Language Feature for Screening Alzheimer's Disease [52.46922921214341]
Alzheimer's disease (AD) has become one of the most significant health challenges in an aging society.
We devised an explainable and effective feature set that leverages the visual capabilities of a large language model (LLM) and the Term Frequency-Inverse Document Frequency (TF-IDF) model.
Our new features can be well explained and interpreted step by step which enhance the interpretability of automatic AD screening.
arXiv Detail & Related papers (2024-11-28T05:23:22Z) - Collapsed Language Models Promote Fairness [88.48232731113306]
We find that debiased language models exhibit collapsed alignment between token representations and word embeddings.
We design a principled fine-tuning method that can effectively improve fairness in a wide range of debiasing methods.
arXiv Detail & Related papers (2024-10-06T13:09:48Z) - Adaptive Contrastive Search: Uncertainty-Guided Decoding for Open-Ended Text Generation [0.20971479389679337]
We introduce adaptive contrastive search, a novel decoding strategy extending contrastive search.
Our findings indicate performance enhancement in both aspects, across different model architectures and datasets.
arXiv Detail & Related papers (2024-07-26T12:23:54Z) - Pixel Sentence Representation Learning [67.4775296225521]
In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process.
We employ visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to be perceived as continuous.
Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision.
arXiv Detail & Related papers (2024-02-13T02:46:45Z) - DenoSent: A Denoising Objective for Self-Supervised Sentence
Representation Learning [59.4644086610381]
We propose a novel denoising objective that inherits from another perspective, i.e., the intra-sentence perspective.
By introducing both discrete and continuous noise, we generate noisy sentences and then train our model to restore them to their original form.
Our empirical evaluations demonstrate that this approach delivers competitive results on both semantic textual similarity (STS) and a wide range of transfer tasks.
arXiv Detail & Related papers (2024-01-24T17:48:45Z) - Language-Oriented Communication with Semantic Coding and Knowledge
Distillation for Text-to-Image Generation [53.97155730116369]
We put forward a novel framework of language-oriented semantic communication (LSC)
In LSC, machines communicate using human language messages that can be interpreted and manipulated via natural language processing (NLP) techniques for SC efficiency.
We introduce three innovative algorithms: 1) semantic source coding (SSC), which compresses a text prompt into its key head words capturing the prompt's syntactic essence; 2) semantic channel coding ( SCC), that improves robustness against errors by substituting head words with their lenghthier synonyms; and 3) semantic knowledge distillation (SKD), that produces listener-customized prompts via in-context learning the listener's
arXiv Detail & Related papers (2023-09-20T08:19:05Z) - A Contrastive Framework for Neural Text Generation [46.845997620234265]
We show that an underlying reason for model degeneration is the anisotropic distribution of token representations.
We present a contrastive solution: (i) SimCTG, a contrastive training objective to calibrate the model's representation space, and (ii) a decoding method -- contrastive search -- to encourage diversity while maintaining coherence in the generated text.
arXiv Detail & Related papers (2022-02-13T21:46:14Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
We investigate three categories of text augmentation methodologies which perform changes on the syntax.
We compare them on part-of-speech tagging, dependency parsing and semantic role labeling for a diverse set of language families.
Our results suggest that the augmentation techniques can further improve over strong baselines based on mBERT.
arXiv Detail & Related papers (2021-11-18T10:52:48Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
We focus on the Commongen benchmark, wherein the aim is to generate a plausible sentence for a given set of input concepts.
We propose strategies for enhancing the semantic correctness of the generated text.
arXiv Detail & Related papers (2020-12-19T23:23:40Z) - Informed Sampling for Diversity in Concept-to-Text NLG [8.883733362171034]
We propose an Imitation Learning approach to explore the level of diversity that a language generation model can reliably produce.
Specifically, we augment the decoding process with a meta-classifier trained to distinguish which words at any given timestep will lead to high-quality output.
arXiv Detail & Related papers (2020-04-29T17:43:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.