Devising a Set of Compact and Explainable Spoken Language Feature for Screening Alzheimer's Disease
- URL: http://arxiv.org/abs/2411.18922v1
- Date: Thu, 28 Nov 2024 05:23:22 GMT
- Title: Devising a Set of Compact and Explainable Spoken Language Feature for Screening Alzheimer's Disease
- Authors: Junan Li, Yunxiang Li, Yuren Wang, Xixin Wu, Helen Meng,
- Abstract summary: Alzheimer's disease (AD) has become one of the most significant health challenges in an aging society.
We devised an explainable and effective feature set that leverages the visual capabilities of a large language model (LLM) and the Term Frequency-Inverse Document Frequency (TF-IDF) model.
Our new features can be well explained and interpreted step by step which enhance the interpretability of automatic AD screening.
- Score: 52.46922921214341
- License:
- Abstract: Alzheimer's disease (AD) has become one of the most significant health challenges in an aging society. The use of spoken language-based AD detection methods has gained prevalence due to their scalability due to their scalability. Based on the Cookie Theft picture description task, we devised an explainable and effective feature set that leverages the visual capabilities of a large language model (LLM) and the Term Frequency-Inverse Document Frequency (TF-IDF) model. Our experimental results show that the newly proposed features consistently outperform traditional linguistic features across two different classifiers with high dimension efficiency. Our new features can be well explained and interpreted step by step which enhance the interpretability of automatic AD screening.
Related papers
- DECT: Harnessing LLM-assisted Fine-Grained Linguistic Knowledge and Label-Switched and Label-Preserved Data Generation for Diagnosis of Alzheimer's Disease [13.38075448636078]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease affecting 50 million people worldwide.
Language impairment is one of the earliest signs of cognitive decline, which can be used to discriminate AD patients from normal control individuals.
Patient-interviewer dialogues may be used to detect such impairments, but they are often mixed with ambiguous, noisy, and irrelevant information.
arXiv Detail & Related papers (2025-02-06T04:00:25Z) - Linguistic Features Extracted by GPT-4 Improve Alzheimer's Disease Detection based on Spontaneous Speech [0.9642922440822034]
Alzheimer's Disease (AD) is a significant and growing public health concern.
Large language models (LLMs), such as GPT, have enabled powerful new possibilities for semantic text analysis.
In this study, we leverage GPT-4 to extract five semantic features from transcripts of spontaneous patient speech.
arXiv Detail & Related papers (2024-12-20T10:43:42Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Profiling Patient Transcript Using Large Language Model Reasoning Augmentation for Alzheimer's Disease Detection [4.961581278723015]
Alzheimer's disease (AD) stands as the predominant cause of dementia, characterized by a gradual decline in speech and language capabilities.
Recent deep-learning advancements have facilitated automated AD detection through spontaneous speech.
Common transcript-based detection methods directly model text patterns in each utterance without a global view of the patient's linguistic characteristics.
arXiv Detail & Related papers (2024-09-19T07:58:07Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainer is a novel framework that, leveraging language-vision models, enables multimodal global explainability.
It employs diffusion models conditioned on optimized text prompts, synthesizing images that maximize class outputs.
The analysis of generated visual descriptions allows for automatic identification of biases and spurious features.
arXiv Detail & Related papers (2024-04-03T10:11:22Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.
However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - Towards preserving word order importance through Forced Invalidation [80.33036864442182]
We show that pre-trained language models are insensitive to word order.
We propose Forced Invalidation to help preserve the importance of word order.
Our experiments demonstrate that Forced Invalidation significantly improves the sensitivity of the models to word order.
arXiv Detail & Related papers (2023-04-11T13:42:10Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - To BERT or Not To BERT: Comparing Speech and Language-based Approaches
for Alzheimer's Disease Detection [17.99855227184379]
Natural language processing and machine learning provide promising techniques for reliably detecting Alzheimer's disease (AD)
We compare and contrast the performance of two such approaches for AD detection on the recent ADReSS challenge dataset.
We observe that fine-tuned BERT models, given the relative importance of linguistics in cognitive impairment detection, outperform feature-based approaches on the AD detection task.
arXiv Detail & Related papers (2020-07-26T04:50:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.