Delayed Memory Unit: Modelling Temporal Dependency Through Delay Gate
- URL: http://arxiv.org/abs/2310.14982v1
- Date: Mon, 23 Oct 2023 14:29:48 GMT
- Title: Delayed Memory Unit: Modelling Temporal Dependency Through Delay Gate
- Authors: Pengfei Sun and Jibin Wu and Malu Zhang and Paul Devos and Dick
Botteldooren
- Abstract summary: Recurrent Neural Networks (RNNs) are renowned for their adeptness in modeling temporal dependencies.
We propose a novel Delayed Memory Unit (DMU) in this paper to enhance the temporal modeling capabilities of vanilla RNNs.
Our proposed DMU demonstrates superior temporal modeling capabilities across a broad range of sequential modeling tasks.
- Score: 17.611912733951662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent Neural Networks (RNNs) are renowned for their adeptness in modeling
temporal dependencies, a trait that has driven their widespread adoption for
sequential data processing. Nevertheless, vanilla RNNs are confronted with the
well-known issue of gradient vanishing and exploding, posing a significant
challenge for learning and establishing long-range dependencies. Additionally,
gated RNNs tend to be over-parameterized, resulting in poor network
generalization. To address these challenges, we propose a novel Delayed Memory
Unit (DMU) in this paper, wherein a delay line structure, coupled with delay
gates, is introduced to facilitate temporal interaction and temporal credit
assignment, so as to enhance the temporal modeling capabilities of vanilla
RNNs. Particularly, the DMU is designed to directly distribute the input
information to the optimal time instant in the future, rather than aggregating
and redistributing it over time through intricate network dynamics. Our
proposed DMU demonstrates superior temporal modeling capabilities across a
broad range of sequential modeling tasks, utilizing considerably fewer
parameters than other state-of-the-art gated RNN models in applications such as
speech recognition, radar gesture recognition, ECG waveform segmentation, and
permuted sequential image classification.
Related papers
- Gated Recurrent Neural Networks with Weighted Time-Delay Feedback [59.125047512495456]
We introduce a novel gated recurrent unit (GRU) with a weighted time-delay feedback mechanism.
We show that $tau$-GRU can converge faster and generalize better than state-of-the-art recurrent units and gated recurrent architectures.
arXiv Detail & Related papers (2022-12-01T02:26:34Z) - An Improved Time Feedforward Connections Recurrent Neural Networks [3.0965505512285967]
Recurrent Neural Networks (RNNs) have been widely applied to deal with temporal problems, such as flood forecasting and financial data processing.
Traditional RNNs models amplify the gradient issue due to the strict time serial dependency.
An improved Time Feedforward Connections Recurrent Neural Networks (TFC-RNNs) model was first proposed to address the gradient issue.
A novel cell structure named Single Gate Recurrent Unit (SGRU) was presented to reduce the number of parameters for RNNs cell.
arXiv Detail & Related papers (2022-11-03T09:32:39Z) - Learning Sequence Representations by Non-local Recurrent Neural Memory [61.65105481899744]
We propose a Non-local Recurrent Neural Memory (NRNM) for supervised sequence representation learning.
Our model is able to capture long-range dependencies and latent high-level features can be distilled by our model.
Our model compares favorably against other state-of-the-art methods specifically designed for each of these sequence applications.
arXiv Detail & Related papers (2022-07-20T07:26:15Z) - TMS: A Temporal Multi-scale Backbone Design for Speaker Embedding [60.292702363839716]
Current SOTA backbone networks for speaker embedding are designed to aggregate multi-scale features from an utterance with multi-branch network architectures for speaker representation.
We propose an effective temporal multi-scale (TMS) model where multi-scale branches could be efficiently designed in a speaker embedding network almost without increasing computational costs.
arXiv Detail & Related papers (2022-03-17T05:49:35Z) - Recurrence-in-Recurrence Networks for Video Deblurring [58.49075799159015]
State-of-the-art video deblurring methods often adopt recurrent neural networks to model the temporal dependency between the frames.
In this paper, we propose recurrence-in-recurrence network architecture to cope with the limitations of short-ranged memory.
arXiv Detail & Related papers (2022-03-12T11:58:13Z) - Group-based Bi-Directional Recurrent Wavelet Neural Networks for Video
Super-Resolution [4.9136996406481135]
Video super-resolution (VSR) aims to estimate a high-resolution (HR) frame from a low-resolution (LR) frames.
Key challenge for VSR lies in the effective exploitation of spatial correlation in an intra-frame and temporal dependency between consecutive frames.
arXiv Detail & Related papers (2021-06-14T06:36:13Z) - CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data [1.8352113484137622]
In this paper, a novel deep learning-based model is developed for modeling multiple temporal features in sporadic data.
The proposed model, called CARRNN, uses a generalized discrete-time autoregressive model that is trainable end-to-end using neural networks modulated by time lags.
It is applied to multivariate time-series regression tasks using data provided for Alzheimer's disease progression modeling and intensive care unit (ICU) mortality rate prediction.
arXiv Detail & Related papers (2021-04-08T12:43:44Z) - UnICORNN: A recurrent model for learning very long time dependencies [0.0]
We propose a novel RNN architecture based on a structure preserving discretization of a Hamiltonian system of second-order ordinary differential equations.
The resulting RNN is fast, invertible (in time), memory efficient and we derive rigorous bounds on the hidden state gradients to prove the mitigation of the exploding and vanishing gradient problem.
arXiv Detail & Related papers (2021-03-09T15:19:59Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.