Synergizing Human-AI Agency: A Guide of 23 Heuristics for Service
Co-Creation with LLM-Based Agents
- URL: http://arxiv.org/abs/2310.15065v2
- Date: Wed, 29 Nov 2023 22:37:21 GMT
- Title: Synergizing Human-AI Agency: A Guide of 23 Heuristics for Service
Co-Creation with LLM-Based Agents
- Authors: Qingxiao Zheng, Zhongwei Xu, Abhinav Choudhry, Yuting Chen, Yongming
Li, Yun Huang
- Abstract summary: This study serves as a primer for interested service providers to determine if and how Large Language Models (LLMs) technology will be integrated for their practitioners and the broader community.
We investigate the mutual learning journey of non-AI experts and AI through CoAGent, a service co-creation tool with LLM-based agents.
- Score: 16.560339524456268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This empirical study serves as a primer for interested service providers to
determine if and how Large Language Models (LLMs) technology will be integrated
for their practitioners and the broader community. We investigate the mutual
learning journey of non-AI experts and AI through CoAGent, a service
co-creation tool with LLM-based agents. Engaging in a three-stage participatory
design processes, we work with with 23 domain experts from public libraries
across the U.S., uncovering their fundamental challenges of integrating AI into
human workflows. Our findings provide 23 actionable "heuristics for service
co-creation with AI", highlighting the nuanced shared responsibilities between
humans and AI. We further exemplar 9 foundational agency aspects for AI,
emphasizing essentials like ownership, fair treatment, and freedom of
expression. Our innovative approach enriches the participatory design model by
incorporating AI as crucial stakeholders and utilizing AI-AI interaction to
identify blind spots. Collectively, these insights pave the way for synergistic
and ethical human-AI co-creation in service contexts, preparing for workforce
ecosystems where AI coexists.
Related papers
- AI-Driven Human-Autonomy Teaming in Tactical Operations: Proposed Framework, Challenges, and Future Directions [10.16399860867284]
Artificial Intelligence (AI) techniques are transforming tactical operations by augmenting human decision-making capabilities.
This paper explores AI-driven Human-Autonomy Teaming (HAT) as a transformative approach.
We propose a comprehensive framework that addresses the key components of AI-driven HAT.
arXiv Detail & Related papers (2024-10-28T15:05:16Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - A Vision for Operationalising Diversity and Inclusion in AI [5.4897262701261225]
This study seeks to envision the operationalization of the ethical imperatives of diversity and inclusion (D&I) within AI ecosystems.
A significant challenge in AI development is the effective operationalization of D&I principles.
This paper proposes a vision of a framework for developing a tool utilizing persona-based simulation by Generative AI (GenAI)
arXiv Detail & Related papers (2023-12-11T02:44:39Z) - The Rise of the AI Co-Pilot: Lessons for Design from Aviation and Beyond [22.33734581699234]
We advocate for a paradigm where AI is seen as a collaborative co-pilot, working under human guidance rather than as a mere tool.
Our paper proposes a design approach that emphasizes active human engagement, control, and skill enhancement in the AI partnership.
arXiv Detail & Related papers (2023-11-16T13:58:15Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
There is no clear definition of what is meant by Human Centered Artificial Intelligence.
This paper introduces the term HCAI agent to refer to any physical or software computational agent equipped with AI components.
We see the notion of HCAI agent, together with its components and functions, as a way to bridge the technical and non-technical discussions on human-centered AI.
arXiv Detail & Related papers (2021-12-29T09:58:59Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
Human-Centered AI (HCAI) refers to the research effort that aims to design and implement AI techniques to support various human tasks.
We illustrate how we approach HCAI using a series of research projects around Data Science (DS) works as a case study.
arXiv Detail & Related papers (2021-10-03T21:47:13Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
We introduce Watch-And-Help (WAH), a challenge for testing social intelligence in AI agents.
In WAH, an AI agent needs to help a human-like agent perform a complex household task efficiently.
We build VirtualHome-Social, a multi-agent household environment, and provide a benchmark including both planning and learning based baselines.
arXiv Detail & Related papers (2020-10-19T21:48:31Z) - Progressing Towards Responsible AI [2.191505742658975]
Observatory on Society and Artificial Intelligence (OSAI) grew out of the project AI4EU.
OSAI aims to stimulate reflection on a broad spectrum of issues of AI (ethical, legal, social, economic and cultural)
arXiv Detail & Related papers (2020-08-11T09:46:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.