A Canonical Data Transformation for Achieving Inter- and Within-group Fairness
- URL: http://arxiv.org/abs/2310.15097v2
- Date: Fri, 5 Jul 2024 19:58:12 GMT
- Title: A Canonical Data Transformation for Achieving Inter- and Within-group Fairness
- Authors: Zachary McBride Lazri, Ivan Brugere, Xin Tian, Dana Dachman-Soled, Antigoni Polychroniadou, Danial Dervovic, Min Wu,
- Abstract summary: We introduce a formal definition of within-group fairness that maintains fairness among individuals from within the same group.
We propose a pre-processing framework to meet both inter- and within-group fairness criteria with little compromise in accuracy.
We apply this framework to the COMPAS risk assessment and Law School datasets and compare its performance to two regularization-based methods.
- Score: 17.820200610132265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increases in the deployment of machine learning algorithms for applications that deal with sensitive data have brought attention to the issue of fairness in machine learning. Many works have been devoted to applications that require different demographic groups to be treated fairly. However, algorithms that aim to satisfy inter-group fairness (also called group fairness) may inadvertently treat individuals within the same demographic group unfairly. To address this issue, we introduce a formal definition of within-group fairness that maintains fairness among individuals from within the same group. We propose a pre-processing framework to meet both inter- and within-group fairness criteria with little compromise in accuracy. The framework maps the feature vectors of members from different groups to an inter-group-fair canonical domain before feeding them into a scoring function. The mapping is constructed to preserve the relative relationship between the scores obtained from the unprocessed feature vectors of individuals from the same demographic group, guaranteeing within-group fairness. We apply this framework to the COMPAS risk assessment and Law School datasets and compare its performance in achieving inter-group and within-group fairness to two regularization-based methods.
Related papers
- A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
Disaggregated evaluation is a central task in AI fairness assessment, where the goal is to measure an AI system's performance across different subgroups.
We introduce a structured regression approach to disaggregated evaluation that we demonstrate can yield reliable system performance estimates even for very small subgroups.
arXiv Detail & Related papers (2024-01-26T14:21:45Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
We propose a model agnostic post-processing framework xOrder for achieving fairness in bipartite ranking.
xOrder is compatible with various classification models and ranking fairness metrics, including supervised and unsupervised fairness metrics.
We evaluate our proposed algorithm on four benchmark data sets and two real-world patient electronic health record repositories.
arXiv Detail & Related papers (2023-07-27T07:42:44Z) - Counterpart Fairness -- Addressing Systematic between-group Differences in Fairness Evaluation [17.495053606192375]
When using machine learning to aid decision-making, it is critical to ensure that an algorithmic decision is fair and does not discriminate against specific individuals/groups.
Existing group fairness methods aim to ensure equal outcomes across groups delineated by protected variables like race or gender.
In cases where systematic differences between groups play a significant role in outcomes, these methods may overlook the influence of non-protected variables.
arXiv Detail & Related papers (2023-05-29T15:41:12Z) - Within-group fairness: A guidance for more sound between-group fairness [1.675857332621569]
We introduce a new concept of fairness so-called within-group fairness.
We develop learning algorithms to control within-group fairness and between-group fairness simultaneously.
Numerical studies show that the proposed learning algorithms improve within-group fairness without sacrificing accuracy as well as between-group fairness.
arXiv Detail & Related papers (2023-01-20T00:39:19Z) - Fair Labeled Clustering [28.297893914525517]
We consider the downstream application of clustering and how group fairness should be ensured for such a setting.
We provide algorithms for such problems and show that in contrast to their NP-hard counterparts in group fair clustering, they permit efficient solutions.
We also consider a well-motivated alternative setting where the decision-maker is free to assign labels to the clusters regardless of the centers' positions in the metric space.
arXiv Detail & Related papers (2022-05-28T07:07:12Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
We develop a fair representation learning algorithm which is able to map individuals belonging to different groups in a single group.
We show experimentally that our methodology is competitive with other fair representation learning algorithms.
arXiv Detail & Related papers (2022-01-17T10:49:49Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
spurious correlations between input samples and the target labels wrongly direct the neural network predictions.
We propose an algorithm that optimize for the worst-off group assignments from a constraint set.
We show improvements in the minority group's performance while preserving overall aggregate accuracy across groups.
arXiv Detail & Related papers (2022-01-10T22:04:48Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Fair-Capacitated Clustering [5.127121704630949]
We introduce the fair-capacitated clustering problem that partitions the data into clusters of similar instances.
We propose two approaches, namely hierarchical clustering and partitioning-based clustering, to obtain the fair-capacitated clustering.
Our experiments on four educational datasets show that our approaches deliver well-balanced clusters in terms of both fairness and cardinality.
arXiv Detail & Related papers (2021-04-25T09:39:39Z) - Distributional Individual Fairness in Clustering [7.303841123034983]
We introduce a framework for assigning individuals, embedded in a metric space, to probability distributions over a bounded number of cluster centers.
We provide an algorithm for clustering with $p$-norm objective and individual fairness constraints with provable approximation guarantee.
arXiv Detail & Related papers (2020-06-22T20:02:09Z) - Mitigating Face Recognition Bias via Group Adaptive Classifier [53.15616844833305]
This work aims to learn a fair face representation, where faces of every group could be more equally represented.
Our work is able to mitigate face recognition bias across demographic groups while maintaining the competitive accuracy.
arXiv Detail & Related papers (2020-06-13T06:43:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.