Counterpart Fairness -- Addressing Systematic between-group Differences in Fairness Evaluation
- URL: http://arxiv.org/abs/2305.18160v4
- Date: Mon, 18 Nov 2024 20:54:53 GMT
- Title: Counterpart Fairness -- Addressing Systematic between-group Differences in Fairness Evaluation
- Authors: Yifei Wang, Zhengyang Zhou, Liqin Wang, John Laurentiev, Peter Hou, Li Zhou, Pengyu Hong,
- Abstract summary: When using machine learning to aid decision-making, it is critical to ensure that an algorithmic decision is fair and does not discriminate against specific individuals/groups.
Existing group fairness methods aim to ensure equal outcomes across groups delineated by protected variables like race or gender.
In cases where systematic differences between groups play a significant role in outcomes, these methods may overlook the influence of non-protected variables.
- Score: 17.495053606192375
- License:
- Abstract: When using machine learning to aid decision-making, it is critical to ensure that an algorithmic decision is fair and does not discriminate against specific individuals/groups, particularly those from underprivileged populations. Existing group fairness methods aim to ensure equal outcomes (such as loan approval rates) across groups delineated by protected variables like race or gender. However, in cases where systematic differences between groups play a significant role in outcomes, these methods may overlook the influence of non-protected variables that can systematically vary across groups. These confounding factors can affect fairness evaluations, making it challenging to assess whether disparities are due to discrimination or inherent differences. Therefore, we recommend a more refined and comprehensive fairness index that accounts for both the systematic differences within groups and the multifaceted, intertwined confounding effects. The proposed index evaluates fairness on counterparts (pairs of individuals who are similar with respect to the task of interest but from different groups), whose group identities cannot be distinguished algorithmically by exploring confounding factors. To identify counterparts, we developed a two-step matching method inspired by propensity score and metric learning. In addition, we introduced a counterpart-based statistical fairness index, called Counterpart Fairness (CFair), to assess the fairness of machine learning models. Empirical results on the MIMIC and COMPAS datasets indicate that standard group-based fairness metrics may not adequately inform about the degree of unfairness present in predictions, as revealed through CFair.
Related papers
- A Canonical Data Transformation for Achieving Inter- and Within-group Fairness [17.820200610132265]
We introduce a formal definition of within-group fairness that maintains fairness among individuals from within the same group.
We propose a pre-processing framework to meet both inter- and within-group fairness criteria with little compromise in accuracy.
We apply this framework to the COMPAS risk assessment and Law School datasets and compare its performance to two regularization-based methods.
arXiv Detail & Related papers (2023-10-23T17:00:20Z) - Equal Confusion Fairness: Measuring Group-Based Disparities in Automated
Decision Systems [5.076419064097733]
This paper proposes a new equal confusion fairness test to check an automated decision system for fairness and a new confusion parity error to quantify the extent of any unfairness.
Overall, the methods and metrics provided here may assess automated decision systems' fairness as part of a more extensive accountability assessment.
arXiv Detail & Related papers (2023-07-02T04:44:19Z) - The Flawed Foundations of Fair Machine Learning [0.0]
We show that there is a trade-off between statistically accurate outcomes and group similar outcomes in any data setting where group disparities exist.
We introduce a proof-of-concept evaluation to aid researchers and designers in understanding the relationship between statistically accurate outcomes and group similar outcomes.
arXiv Detail & Related papers (2023-06-02T10:07:12Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Error Parity Fairness: Testing for Group Fairness in Regression Tasks [5.076419064097733]
This work presents error parity as a regression fairness notion and introduces a testing methodology to assess group fairness.
It is followed by a suitable permutation test to compare groups on several statistics to explore disparities and identify impacted groups.
Overall, the proposed regression fairness testing methodology fills a gap in the fair machine learning literature and may serve as a part of larger accountability assessments and algorithm audits.
arXiv Detail & Related papers (2022-08-16T17:47:20Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
We analyze the intersection of fairness in machine learning and healthcare disparities.
We provide a critical review of the associated fairness metrics from a machine learning standpoint.
We propose several new research directions that hold promise for developing ethical and equitable ML applications in healthcare.
arXiv Detail & Related papers (2022-06-29T04:32:10Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
This paper formalizes a family of exposure fairness metrics that model the problem jointly from the perspective of both the consumers and producers.
Specifically, we consider group attributes for both types of stakeholders to identify and mitigate fairness concerns that go beyond individual users and items towards more systemic biases in recommendation.
arXiv Detail & Related papers (2022-04-29T19:13:23Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.