論文の概要: Unlocking the Transferability of Tokens in Deep Models for Tabular Data
- arxiv url: http://arxiv.org/abs/2310.15149v1
- Date: Mon, 23 Oct 2023 17:53:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 18:05:42.213158
- Title: Unlocking the Transferability of Tokens in Deep Models for Tabular Data
- Title(参考訳): タブラルデータのための深部モデルにおけるトークンの転送可能性の解錠
- Authors: Qi-Le Zhou, Han-Jia Ye, Le-Ye Wang, De-Chuan Zhan
- Abstract要約: トレーニング済みのディープニューラルネットワークの微調整は、さまざまな機械学習タスクにおいて成功しているパラダイムとなっている。
本稿では,特徴トークンの品質向上を目的としたTabTokenを提案する。
トークンを規則化し、機能内および機能間のセマンティクスをキャプチャする、対照的な目的を導入します。
- 参考スコア(独自算出の注目度): 67.11727608815636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning a pre-trained deep neural network has become a successful
paradigm in various machine learning tasks. However, such a paradigm becomes
particularly challenging with tabular data when there are discrepancies between
the feature sets of pre-trained models and the target tasks. In this paper, we
propose TabToken, a method aims at enhancing the quality of feature tokens
(i.e., embeddings of tabular features). TabToken allows for the utilization of
pre-trained models when the upstream and downstream tasks share overlapping
features, facilitating model fine-tuning even with limited training examples.
Specifically, we introduce a contrastive objective that regularizes the tokens,
capturing the semantics within and across features. During the pre-training
stage, the tokens are learned jointly with top-layer deep models such as
transformer. In the downstream task, tokens of the shared features are kept
fixed while TabToken efficiently fine-tunes the remaining parts of the model.
TabToken not only enables knowledge transfer from a pre-trained model to tasks
with heterogeneous features, but also enhances the discriminative ability of
deep tabular models in standard classification and regression tasks.
- Abstract(参考訳): トレーニング済みのディープニューラルネットワークの微調整は、さまざまな機械学習タスクにおいて成功しているパラダイムとなっている。
しかし、事前訓練されたモデルの特徴セットと目標タスクの間に相違点がある場合、このようなパラダイムは表形式のデータでは特に困難になる。
本稿では,特徴トークン(表型特徴の埋め込み)の品質向上を目的としたタブトケンを提案する。
tabtokenでは,上流タスクと下流タスクが重複する機能を共有する場合の事前トレーニングモデルの利用が可能で,限られたトレーニング例でもモデルの微調整が容易になる。
具体的には、トークンを規則化し、機能内および機能間のセマンティクスをキャプチャする、対照的な目的を導入する。
事前訓練の段階では、トークンはトランスフォーマーなどの上位層深層モデルと共同で学習される。
下流タスクでは、共有機能のトークンは固定され、TabTokenはモデルの残りの部分を効率的に微調整する。
tabtokenは、トレーニング済みモデルから異種機能を持つタスクへの知識転送を可能にするだけでなく、標準分類や回帰タスクにおける深層表モデルの識別能力を高める。
関連論文リスト
- Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
本稿では,学習可能なパラメータをわずかに限定して,事前学習した視覚変換器を下流認識タスクに適用する方法を示す。
学習可能で軽量なモジュールを用いてタスク固有のクエリを合成する。
本手法はメモリ制約下での最先端性能を実現し,実環境における適用性を示す。
論文 参考訳(メタデータ) (2024-07-09T15:45:04Z) - Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
人間は、ほんのわずかの例に晒された後に、新しい、目に見えない画像を正確に分類する能力を持っている。
人工ニューラルネットワークモデルでは、限られたサンプルを持つ2つのイメージを区別する最も関連性の高い特徴を決定することが課題である。
本稿では,サポートとクエリサンプルをパッチに分割するタスク内相互注意手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T02:02:57Z) - Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
ディープニューラルネットワーク(DNN)の転送性は、画像および言語処理において著しく進歩している。
本稿では,表型データ予測のための訓練済みLMであるTP-BERTaを提案する。
新たな相対等級トークン化では、スカラー数値の特徴値を細分化した高次元トークンに変換し、特徴値と対応する特徴名を統合する。
論文 参考訳(メタデータ) (2024-03-04T08:38:56Z) - ReConTab: Regularized Contrastive Representation Learning for Tabular
Data [8.178223284255791]
コントラスト学習を正規化した深層自動表現学習フレームワークReConTabを紹介する。
ReConTabは、どんな種類のモデリングタスクにも依存せず、モデル入力から同じ生のフィーチャに基づいて非対称のオートエンコーダを構築する。
大規模な実世界のデータセットで実施された実験は、フレームワークのキャパシティを裏付け、実質的でロバストなパフォーマンス改善をもたらす。
論文 参考訳(メタデータ) (2023-10-28T00:05:28Z) - Distinguishability Calibration to In-Context Learning [31.375797763897104]
そこで本研究では, PLM符号化埋め込みを新しい距離空間にマッピングすることで, 埋め込みの識別性を保証する手法を提案する。
また、双曲的埋め込みの利点を生かして、粒度の細かいクラス関連トークン埋め込み間の階層的関係を捉える。
論文 参考訳(メタデータ) (2023-02-13T09:15:00Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
上流データにより、グラフニューラルネットワークはGBDTモデルよりも決定的な優位性を示す。
そこで本研究では,表在化学習のための現実的な診断ベンチマークを提案する。
上流と下流の特徴セットが異なる場合の擬似特徴法を提案する。
論文 参考訳(メタデータ) (2022-06-30T14:24:32Z) - Few-Shot Learning with Siamese Networks and Label Tuning [5.006086647446482]
適切な事前トレーニングを行うことで、テキストやラベルを埋め込むSiamese Networksが、競争力のある代替手段となることを示す。
ラベルの埋め込みだけを変えることで、数ショットのセットアップでモデルを適応できる、シンプルで計算効率の良い手法であるラベルチューニングを導入する。
論文 参考訳(メタデータ) (2022-03-28T11:16:46Z) - Token Dropping for Efficient BERT Pretraining [33.63507016806947]
本研究では,変圧器モデルの事前学習を高速化する簡易かつ効果的な「トーケンドロップ」手法を開発した。
我々は既に組み込まれているマスキング言語モデリング(MLM)の損失を利用して、計算オーバーヘッドのない重要でないトークンを識別する。
この単純なアプローチは、BERTの事前トレーニングコストを25%削減し、標準の下流タスクで同様の微調整性能を実現する。
論文 参考訳(メタデータ) (2022-03-24T17:50:46Z) - Few-shot Sequence Learning with Transformers [79.87875859408955]
少数のトレーニング例で提供される新しいタスクの学習を目的とした少数のショットアルゴリズム。
本研究では,データポイントがトークンのシーケンスである設定において,少数ショット学習を行う。
トランスフォーマーに基づく効率的な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-17T12:30:38Z) - Train No Evil: Selective Masking for Task-Guided Pre-Training [97.03615486457065]
一般的な事前学習と微調整の間を選択的にマスキングするタスク誘導事前学習段階を付加した3段階のフレームワークを提案する。
提案手法は,50%未満のコストで同等あるいはさらに優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-04-21T03:14:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。