A Realist Interpretation of Unitarity in Quantum Gravity
- URL: http://arxiv.org/abs/2310.15157v4
- Date: Sun, 5 May 2024 17:10:10 GMT
- Title: A Realist Interpretation of Unitarity in Quantum Gravity
- Authors: Indrajit Sen, Stephon Alexander, Justin Dressel,
- Abstract summary: Unitarity is a difficult concept to implement in canonical quantum gravity because of state non-normalizability and the problem of time.
We use the postulate of a definite configuration in the theory to define a global time for the gravitational-fermionic system.
We find unitary states in mini-superspace by finding an approximate solution to the Hamiltonian constraint.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unitarity is a difficult concept to implement in canonical quantum gravity because of state non-normalizability and the problem of time. We take a realist approach based on pilot-wave theory to address this issue in the Ashtekar formulation of the Wheeler-DeWitt equation. We use the postulate of a definite configuration in the theory to define a global time for the gravitational-fermionic system recently discussed in (Phys. Rev. D 106.10 (2022): 106012), by parameterizing a variation of a Weyl-spinor that depends on the Kodama state. The total Hamiltonian constraint yields a time-dependent Schrodinger equation, without semi-classical approximations, which we use to derive a local continuity equation over the configuration space. We implement the reality conditions at the level of the guidance equation, and obtain a real spin-connection, extrinsic curvature and triad along the system trajectory. We obtain quantum corrections to deSitter spacetime from the guidance equation. The non-normalizable Kodama state is naturally factored out of the full quantum state in the conserved current density, opening the possibility for quantum-mechanical unitarity. We also give a pilot-wave generalisation of the notion of unitarity applicable to non-normalizable states, and show the existence of equilibrium density for our system. Lastly, we find unitary states in mini-superspace by finding an approximate solution to the Hamiltonian constraint.
Related papers
- Quantum correlations in the steady state of light-emitter ensembles from
perturbation theory [0.0]
In systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit exhibits spin squeezing.
Our main result is that in systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit generically exhibits spin squeezing.
arXiv Detail & Related papers (2024-02-26T18:50:30Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Physical interpretation of non-normalizable harmonic oscillator states
and relaxation to pilot-wave equilibrium [0.0]
We argue that pilot-wave theory gives a straightforward physical interpretation of non-normalizable quantum states.
We show that the non-normalizable eigenstates and their superpositions are bound states in the sense that the velocity field $v_y to 0$ at large.
We give an explanation of the emergence of quantization in pilot-wave theory in terms of instability of non-normalizable states due to perturbations and environmental interactions.
arXiv Detail & Related papers (2022-08-18T16:43:37Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Sufficient conditions for adiabaticity in open quantum systems [0.0]
We introduce sufficient conditions for the adiabatic approximation in open quantum systems.
We first illustrate our results by showing that the adiabatic approximation for open systems is compatible with the description of quantum thermodynamics at thermal equilibrium.
We also apply our sufficient conditions as a tool in quantum control, evaluating the adiabatic behavior for the Hamiltonians of both the Deutsch algorithm and the Landau-Zener model under decoherence.
arXiv Detail & Related papers (2020-07-29T22:19:42Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Squeezed coherent states for gravitational well in noncommutative space [0.0]
We have studied the quantum gravitational well (GW) under the shed of noncommutative (NC) space.
We have considered both position-position and momentum-momentum noncommutativity.
We have shown that the solutions of the time-dependent Schr"odinger equation are squeezed-coherent states.
arXiv Detail & Related papers (2020-06-20T23:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.