論文の概要: RoboDepth: Robust Out-of-Distribution Depth Estimation under Corruptions
- arxiv url: http://arxiv.org/abs/2310.15171v1
- Date: Mon, 23 Oct 2023 17:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 17:58:04.012803
- Title: RoboDepth: Robust Out-of-Distribution Depth Estimation under Corruptions
- Title(参考訳): robodepth: 腐敗下でのロバストな分散深さの推定
- Authors: Lingdong Kong and Shaoyuan Xie and Hanjiang Hu and Lai Xing Ng and
Benoit R. Cottereau and Wei Tsang Ooi
- Abstract要約: 3つのカテゴリにまたがる18の汚職にまたがる包括的な堅牢性テストスイートであるRoboDepthを紹介します。
室内および屋外の現場における42の深度推定モデルを用いて,これらの汚損に対するレジリエンスを評価する。
本研究は, 厳密性評価フレームワークが欠如している場合, 多くの先行深度推定モデルが, 典型的な汚職の影響を受けやすいことを示すものである。
- 参考スコア(独自算出の注目度): 7.359657743276515
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Depth estimation from monocular images is pivotal for real-world visual
perception systems. While current learning-based depth estimation models train
and test on meticulously curated data, they often overlook out-of-distribution
(OoD) situations. Yet, in practical settings -- especially safety-critical ones
like autonomous driving -- common corruptions can arise. Addressing this
oversight, we introduce a comprehensive robustness test suite, RoboDepth,
encompassing 18 corruptions spanning three categories: i) weather and lighting
conditions; ii) sensor failures and movement; and iii) data processing
anomalies. We subsequently benchmark 42 depth estimation models across indoor
and outdoor scenes to assess their resilience to these corruptions. Our
findings underscore that, in the absence of a dedicated robustness evaluation
framework, many leading depth estimation models may be susceptible to typical
corruptions. We delve into design considerations for crafting more robust depth
estimation models, touching upon pre-training, augmentation, modality, model
capacity, and learning paradigms. We anticipate our benchmark will establish a
foundational platform for advancing robust OoD depth estimation.
- Abstract(参考訳): 実世界の視覚知覚システムでは,単眼画像からの奥行き推定が重要である。
現在の学習に基づく深度推定モデルは、厳密にキュレートされたデータをトレーニングし、テストするが、それらはしばしばアウト・オブ・ディストリビューション(OoD)の状況を見落としている。
しかし、現実の環境では、特に自動運転のような安全クリティカルな状況では、共通の腐敗が発生する可能性がある。
そこで我々は,3つのカテゴリにまたがる18の腐敗を包含する包括的なロバストネステストスイートであるrobodepthを紹介する。
一 天候及び照明条件
二 センサの故障及び移動
三 データ処理異常
室内および屋外のシーンにおける42の深さ推定モデルをベンチマークし,これらの破損に対するレジリエンスを評価する。
本研究は, 厳密性評価フレームワークが欠如している場合, 多くの先行深度推定モデルは, 典型的な汚損の影響を受けやすいことを示した。
我々は,事前トレーニング,強化,モダリティ,モデル容量,学習パラダイムに触発して,より堅牢な深さ推定モデルを構築するための設計上の考慮事項を検討する。
我々は,本ベンチマークがロバストなood深度推定のための基礎的プラットフォームを確立することを期待している。
関連論文リスト
- Structure-Centric Robust Monocular Depth Estimation via Knowledge Distillation [9.032563775151074]
単眼深度推定はコンピュータビジョンにおける3次元知覚の重要な手法である。
現実のシナリオでは、悪天候の変動、動きのぼやけ、夜間の照明条件の悪いシーンなど、大きな課題に直面している。
我々は,局所的なテクスチャへの過度な依存を低減し,パターンの欠落や干渉に対する堅牢性を向上するための新しいアプローチを考案した。
論文 参考訳(メタデータ) (2024-10-09T15:20:29Z) - PoseBench: Benchmarking the Robustness of Pose Estimation Models under Corruptions [57.871692507044344]
ポース推定は、単眼画像を用いて人や動物の解剖学的キーポイントを正確に同定することを目的としている。
現在のモデルは一般的に、クリーンなデータに基づいてトレーニングされ、テストされる。
実世界の腐敗に対するポーズ推定モデルの堅牢性を評価するためのベンチマークであるPoseBenchを紹介する。
論文 参考訳(メタデータ) (2024-06-20T14:40:17Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
本稿では,BEVアルゴリズムのレジリエンスを評価するためのベンチマークスイートであるRoboBEVを紹介する。
検出,マップセグメンテーション,深さ推定,占有予測といったタスクにまたがる33の最先端のBEVベースの知覚モデルを評価する。
また, 事前学習や深度自由なBEVトランスフォーメーションなどの戦略が, アウト・オブ・ディストリビューションデータに対するロバスト性を高める上で有効であることを示す。
論文 参考訳(メタデータ) (2024-05-27T17:59:39Z) - Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3Dは3Dシーン理解モデルの信頼性をベンチマークし精査する先駆的な試みである。
10種類の3Dデータセットにわたる28の最先端モデルを評価した。
本稿では,3次元モデルのキャリブレーション向上を目的とした,深度対応のスケーリング手法であるDeptSを紹介する。
論文 参考訳(メタデータ) (2024-03-25T17:59:59Z) - The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation [97.63185634482552]
我々は,RoboDepth Challengeの優勝ソリューションを要約する。
この課題は、堅牢なOoD深度推定を容易にし、前進させるように設計された。
この課題が、堅牢で信頼性の高い深度推定に関する将来の研究の基盤となることを願っている。
論文 参考訳(メタデータ) (2023-07-27T17:59:56Z) - Robo3D: Towards Robust and Reliable 3D Perception against Corruptions [58.306694836881235]
我々は,3次元検出器とセグメンタのロバスト性を,アウト・オブ・ディストリビューションのシナリオで検証するための,最初の総合的なベンチマークであるRobo3Dを紹介する。
気象条件の悪化,外乱,センサの故障などに起因する8種類の汚職について検討した。
本稿では,モデルレジリエンスを高めるための簡易なフレキシブルなボキセル化戦略とともに,密度に敏感なトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-30T17:59:17Z) - Benchmarking Robustness of 3D Object Detection to Common Corruptions in
Autonomous Driving [44.753797839280516]
既存の3D検出器は、悪天候やセンサーノイズなどによって引き起こされる現実世界の腐敗に対して堅牢性に欠ける。
実世界の運転シナリオを考慮したLiDARとカメラ入力の27種類の共通汚職をベンチマークした。
本研究は,24種類の3次元物体検出モデルを用いた大規模実験を行い,ロバスト性の評価を行った。
論文 参考訳(メタデータ) (2023-03-20T11:45:54Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
自己監督型単眼深度推定は静的な場面で顕著な結果を示した。
トレーニングネットワークのマルチビュー整合性の仮定に依存するが、動的オブジェクト領域に違反する。
単一画像の深度を事前に生成するための,外部トレーニング付き単眼深度推定モデルを提案する。
我々のモデルは、高度にダイナミックなシーンのモノクロビデオからトレーニングしても、シャープで正確な深度マップを予測できる。
論文 参考訳(メタデータ) (2022-11-07T16:17:47Z) - Variational Monocular Depth Estimation for Reliability Prediction [12.951621755732544]
教師付き学習手法の代替として,単眼深度推定のための自己教師付き学習が広く研究されている。
従来はモデル構造の変更による深度推定の精度向上に成功している。
本稿では, 単眼深度推定のための変分モデルを理論的に定式化し, 推定深度画像の信頼性を推定する。
論文 参考訳(メタデータ) (2020-11-24T06:23:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。