Entanglement negativity between separated regions in quantum critical systems
- URL: http://arxiv.org/abs/2310.15273v4
- Date: Fri, 3 May 2024 14:49:45 GMT
- Title: Entanglement negativity between separated regions in quantum critical systems
- Authors: Gilles Parez, William Witczak-Krempa,
- Abstract summary: We study the entanglement between disjoint subregions in quantum critical systems through the lens of the logarithmic negativity.
At small separations, the logarithmic negativity is big and displays universal behavior, but we show non-perturbatively that it decays faster than any power at large separations.
The corresponding absence of distillable entanglement at large separations generalizes the 1d result, and indicates that quantum critical groundstates do not possess long-range bipartite entanglement, at least for bosons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the entanglement between disjoint subregions in quantum critical systems through the lens of the logarithmic negativity. We work with systems in arbitrary dimensions, including conformal field theories and their corresponding lattice Hamiltonians, as well as resonating valence-bond states. At small separations, the logarithmic negativity is big and displays universal behavior, but we show non-perturbatively that it decays faster than any power at large separations. This can already be seen in the minimal setting of single-spin subregions. The corresponding absence of distillable entanglement at large separations generalizes the 1d result, and indicates that quantum critical groundstates do not possess long-range bipartite entanglement, at least for bosons. For systems with fermions, a more suitable definition of the logarithmic negativity exists that takes into account fermion parity, and we show that it decays algebraically. Along the way we obtain general results for the moments of the partially transposed density matrix.
Related papers
- The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Logarithmic Negativity and Spectrum in Free Fermionic Systems for
Well-separated Intervals [0.0]
We find that none of the eigenvalues of the density matrix become negative, but rather they develop a small imaginary value, leading to non-zero logarithmic negativity.
One may compute logarithmic negativity in further situations, but we find that the results are non-universal, depending non-smoothly on the Fermi level and the size of the intervals in units of the lattice spacing.
arXiv Detail & Related papers (2023-05-26T12:05:32Z) - Microscopic theory of nonlinear phase space filling in polaritonic lattices [16.34646723046073]
We develop a full microscopic theory for a nonlinear phase space filling (NPSF) in strongly coupled two-dimensional polaritonic lattices.
We go beyond the existing theoretical description and discover the broad scope of regimes where NPSF crucially modifies the optical response.
Our findings can help describing recent observations of strong nonlinearity in heterobilayers of transition metal dichalcogenides.
arXiv Detail & Related papers (2022-12-15T17:02:33Z) - Entanglement negativity versus mutual information in the quantum Hall
effect and beyond [0.0]
We study two entanglement measures in a large family of systems including incompressible quantum Hall states.
We first obtain non-perturbative properties regarding the geometrical dependence of the LN and MI.
We explicitly verify these properties with integer quantum Hall states.
arXiv Detail & Related papers (2022-08-26T18:00:01Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Logarithmic negativity in out-of-equilibrium open free-fermion chains:
An exactly solvable case [0.0]
We derive the quasiparticle picture for the fermionic logarithmic negativity in a tight-binding chain subject to gain and loss dissipation.
We consider the negativity between both adjacent and disjoint intervals embedded in an infinite chain.
arXiv Detail & Related papers (2022-05-04T15:48:18Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z) - Anyonic Partial Transpose I: Quantum Information Aspects [0.0]
A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose.
The corresponding entanglement measure is called the logarithmic negativity.
We conjecture that the subspace of states with a vanishing logarithmic negativity is a set of measure zero in the entire space of anyonic states.
arXiv Detail & Related papers (2020-12-03T19:26:35Z) - Entanglement negativity spectrum of random mixed states: A diagrammatic
approach [0.34410212782758054]
entanglement properties of random pure states are relevant to a variety of problems ranging from chaotic quantum dynamics to black hole physics.
In this paper, we generalize this setup to random mixed states by coupling the system to a bath and use the partial transpose to study their entanglement properties.
arXiv Detail & Related papers (2020-11-02T19:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.